zoukankan      html  css  js  c++  java
  • UVA211-The Domino Effect(dfs)

    Problem UVA211-The Domino Effect

    Accept:536  Submit:2504

    Time Limit: 3000 mSec

     Problem Description

     

     Input

    The input file will contain several of problem sets. Each set consists of seven lines of eight integers from 0 through 6, representing an observed pattern of pips. Each set is corresponds to a legitimate configuration of bones (there will be at least one map possible for each problem set). There is no intervening data separating the problem sets.

     Output

    Correct output consists of a problem set label (beginning with Set #1) followed by an echo printing of the problem set itself. This is followed by a map label for the set and the map(s) which correspond to the problem set. (Multiple maps can be output in any order.) After all maps for a problem set have been printed, a summary line stating the number of possible maps appears. At least three lines are skipped between the output from different problem sets while at least one line separates the labels, echo printing, and maps within the same problem set.
    Note: A sample input file of two problem sets along with the correct output are shown.

     Sample Input

    5 4 3 6 5 3 4 6
    0 6 0 1 2 3 1 1
    3 2 6 5 0 4 2 0
    5 3 6 2 3 2 0 6
    4 0 4 1 0 0 4 1
    5 2 2 4 4 1 6 5
    5 5 3 6 1 2 3 1
    4 2 5 2 6 3 5 4
    5 0 4 3 1 4 1 1
    1 2 3 0 2 2 2 2
    1 4 0 1 3 5 6 5
    4 0 6 0 3 6 6 5
    4 0 1 6 4 0 3 0
    6 5 3 6 2 1 5 3
     
     

     Sample Ouput

    Layout #1:
       5   4   3   6   5   3   4   6
       0   6   0   1   2   3   1   1
       3   2   6   5   0   4   2   0
       5   3   6   2   3   2   0   6
       4   0   4   1   0   0   4   1
       5   2   2   4   4   1   6   5
       5   5   3   6   1   2   3   1
     
    Maps resulting from layout #1 are:
     
       6  20  20  27  27  19  25  25
       6  18   2   2   3  19   8   8
      21  18  28  17   3  16  16   7
      21   4  28  17  15  15   5   7
      24   4  11  11   1   1   5  12
      24  14  14  23  23  13  13  12
      26  26  22  22   9   9  10  10
     
    There are 1 solution(s) for layout #1.
     
     
     
    Layout #2:
       4   2   5   2   6   3   5   4
       5   0   4   3   1   4   1   1
       1   2   3   0   2   2   2   2
       1   4   0   1   3   5   6   5
       4   0   6   0   3   6   6   5
       4   0   1   6   4   0   3   0
       6   5   3   6   2   1   5   3
     
    Maps resulting from layout #2 are:
     
      16  16  24  18  18  20  12  11
       6   6  24  10  10  20  12  11
       8  15  15   3   3  17  14  14
       8   5   5   2  19  17  28  26
      23   1  13   2  19   7  28  26
      23   1  13  25  25   7   4   4
      27  27  22  22   9   9  21  21
     
      16  16  24  18  18  20  12  11
       6   6  24  10  10  20  12  11
       8  15  15   3   3  17  14  14
       8   5   5   2  19  17  28  26
      23   1  13   2  19   7  28  26
      23   1  13  25  25   7  21   4
      27  27  22  22   9   9  21   4
     
    There are 2 solution(s) for layout #2.
     
    题解:非常暴力的搜索。想了半天剪枝怎么剪,最后发现不用剪......(想想也对,可能的情况确实比较少)
     
     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 const int maxn = 10;
     6 const int n = 7,m = 8;
     7 
     8 int table[maxn][maxn];
     9 int gra[maxn][maxn],ans[maxn][maxn];
    10 int _count;
    11 bool vis[maxn][maxn];
    12 bool used[maxn<<2];
    13 int dx[] = {0,1};
    14 int dy[] = {1,0};
    15 
    16 void init(){
    17     memset(table,0,sizeof(table));
    18     memset(vis,false,sizeof(vis));
    19     memset(used,false,sizeof(used));
    20     int i = 0,j = 0,cnt = 1;
    21     for(int len = 7;len >= 0;len--){
    22         for(int p = j;p < 7;p++){
    23             table[i][p] = table[p][i] = cnt++;
    24         }
    25         i++,j++;
    26     }
    27 }
    28 
    29 void dfs(int x,int y,int cnt){
    30     if(cnt == 28){
    31         _count++;
    32         for(int i = 0;i < n;i++){
    33             for(int j = 0;j < m;j++){
    34                 printf("%4d",ans[i][j]);
    35             }
    36             printf("
    ");
    37         }
    38         printf("
    ");
    39         return;
    40     }
    41 
    42     if(y == m) x++,y = 0;
    43     if(vis[x][y]) dfs(x,y+1,cnt);
    44     else{
    45         for(int i = 0;i < 2;i++){
    46             int xx = x+dx[i],yy = y+dy[i];
    47             if(xx>=n || yy>=m) continue;
    48             if(vis[xx][yy] || used[table[gra[x][y]][gra[xx][yy]]]) continue;
    49 
    50             ans[x][y] = ans[xx][yy] = table[gra[x][y]][gra[xx][yy]];
    51             vis[x][y] = vis[xx][yy] = used[table[gra[x][y]][gra[xx][yy]]] = true;
    52             dfs(x,y+1,cnt+1);
    53             vis[x][y] = vis[xx][yy] = used[table[gra[x][y]][gra[xx][yy]]] = false;
    54         }
    55     }
    56 }
    57 
    58 int main()
    59 {
    60 #ifdef GEH
    61     freopen("input.txt","r",stdin);
    62 #endif
    63     init();
    64     int iCase = 0;
    65     while(~scanf("%d",&gra[0][0])){
    66         for(int i = 0;i < n;i++){
    67             for(int j = 0;j < m;j++){
    68                 if(i==0 && j==0) continue;
    69                 scanf("%d",&gra[i][j]);
    70             }
    71         }
    72 
    73         if(iCase) printf("
    
    
    ");
    74         printf("Layout #%d:
    
    ",++iCase);
    75         for(int i = 0;i < n;i++){
    76             for(int j = 0;j < m;j++){
    77                 printf("%4d",gra[i][j]);
    78             }
    79             printf("
    ");
    80         }
    81         printf("
    ");
    82         printf("Maps resulting from layout #%d are:
    
    ",iCase);
    83         _count = 0;
    84         dfs(0,0,0);
    85         printf("There are %d solution(s) for layout #%d.
    ",_count,iCase);
    86     }
    87     return 0;
    88 }
     
  • 相关阅读:
    【noip2011】选择客栈
    【noip2013】货车运输
    【bzoj3732】Network
    Codeforces 111C Petya and Spiders (状压dp)
    线段树优化 dijkstra (CF787D Legacy)
    Codeforces 908G Yet Another Maxflow Problem (最小割定理,线段树)
    IOI 2007 Sail (线段树+贪心)
    Codeforces 474E Pillars (树状数组+dp)
    Bzoj 3688 折线统计(dp+树状数组)
    Gorgeous Sequence (线段树)
  • 原文地址:https://www.cnblogs.com/npugen/p/9572111.html
Copyright © 2011-2022 走看看