zoukankan      html  css  js  c++  java
  • CF1073G Yet Another LCP Problem SA+权值线段树

    (color{#0066ff}{ 题目描述 })

    (lcp(i,j))表示i这个后缀和j这个后缀的最长公共前缀长度

    给定一个字符串,每次询问的时候给出两个正整数集合(A)(B),求

    (sum_{i in A,j in B})(lcp(i,j)) 的值

    (color{#0066ff}{输入格式})

    第一行两个整数n,m,字符串长度和询问个数

    接下来一行为长度为n的字符串

    接下来每一组询问,第一行两个整数,为A,B集合大小

    接下来两行分别为A,B的元素

    (color{#0066ff}{输出格式})

    对于每个询问输出ans

    (color{#0066ff}{输入样例})

    7 4
    abacaba
    2 2
    1 2
    1 2
    3 1
    1 2 3
    7
    1 7
    1
    1 2 3 4 5 6 7
    2 2
    1 5
    1 5
    

    (color{#0066ff}{输出样例})

    13
    2
    12
    16
    

    (color{#0066ff}{数据范围与提示})

    (1 le n, q le 2 cdot 10^5, sumlimits_{i = 1}^{i = q}{k_i} le 2 cdot 10^5 ,sumlimits_{i = 1}^{i = q}{l_i} le 2 cdot 10^5)

    (color{#0066ff}{ 题解 })

    首先跑一遍SA

    然后问题转为,给你一个序列h

    每次询问给你两个集合, 问两个集合的元素任意出一个组成区间的min之和

    暴力显然是倍增rmq然后(O(N^2))枚举的

    不难发现,对于确定的一个 (b_j),随着 (a_i) 的增大,(lcp(b_j, a_i)) 是单调不递增的。

    因此,我们枚举 (a_i),分为 2 种情况。(forall b_j in (a_{i-1}, a_i]),它们在之前没有计算过贡献,这些可以rmqO(1)求。(forall b_j leqslant a_{i-1}),它们在 (a_{i-1}) 的时候就已经有贡献了,让这些贡献都与$a_{i-1}到a_i 的min取min, 即可

    这东西就可以用权值线段树维护了

    同理,可以求出 (b_j geqslant a_i),把重复的 (b_j= a_i) 的贡献减掉就行了。

    #include <bits/stdc++.h>
    
    typedef long long LL;
    
    LL in() {
        LL x = 0, f = 1; char ch;
        while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
        for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
        return x * f;
    }
    
    const int maxn = 2e5 + 100;
    const int inf = 0x7fffffff;
    
    int n, m, T;
    int H[maxn], c[maxn], x[maxn], y[maxn], sa[maxn], rk[maxn];
    LL l[maxn], r[maxn];
    char s[maxn];
    int fuck1[maxn], fuck2[maxn], lg[maxn];
    int f[maxn][25];
    
    struct Tree {
    protected:
        struct node {
            node *ch[2];
            int siz, tag, l, r;
            LL val;
            node(int siz = 0, int tag = 0, int l = 0, int r = 0, LL val = 0): siz(siz), tag(tag), l(l), r(r), val(val) {}
            void upd() { 
                siz = ch[0]->siz + ch[1]->siz;
                val = ch[0]->val + ch[1]->val;
            }
            void clr() { siz = val = 0, tag = 1; }
            void dwn() {
                if(!tag) return;
                ch[0]->clr(), ch[1]->clr();
                tag = 0;
            }
        }*root;
        void build(node *&o, int l, int r) {
            o = new node(0, 0, l, r);
            if(l == r) return;
            int mid = (l + r) >> 1;
            build(o->ch[0], l, mid);
            build(o->ch[1], mid + 1, r);
        }
        void modify(node *o, int p, int x) {
            if(!p) return;
            if(o->r < p || o->l > p) return;
            if(o->l == o->r) return(void)(o->siz += x, o->val += 1LL * p * x);
            o->dwn();
            modify(o->ch[0], p, x);
            modify(o->ch[1], p, x);
            o->upd();
        }
        LL query(node *o, int l, int r) {
            if(o->r < l || o->l > r || l > r) return 0;
            if(l <= o->l && o->r <= r) {
                LL tmp = o->siz;
                o->clr();
                return tmp;
            }
            o->dwn();
            LL ans = query(o->ch[0], l, r) + query(o->ch[1], l, r);
            return o->upd(), ans;
        }
    public:
        void build(int len) { build(root, 1, len); }
        void lazy(int p, int x) { modify(root, p, x); }
        LL query(int l, int r) { return query(root, l, r); }
        void clr() { root->val = 0, root->siz = 0, root->tag = 1; }
        LL getans() { return root->val; }
    }t;
    void predoit() {
        m = 122;
        for(int i = 1; i <= n; i++) c[x[i] = s[i]]++;
        for(int i = 1; i <= m; i++) c[i] += c[i - 1];
        for(int i = n; i >= 1; i--) sa[c[x[i]]--] = i;
        for(int k = 1; k <= n; k <<= 1) {
            int num = 0;
            for(int i = n - k + 1; i <= n; i++) y[++num] = i;
            for(int i = 1; i <= n; i++) if(sa[i] > k) y[++num] = sa[i] - k;
            for(int i = 1; i <= m; i++) c[i] = 0;
            for(int i = 1; i <= n; i++) c[x[i]]++;
            for(int i = 1; i <= m; i++) c[i] += c[i - 1];
            for(int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i], y[i] = 0;
            std::swap(x ,y);
            x[sa[1]] = 1, num = 1;
            for(int i = 2; i <= n; i++) 
                x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k])? num : ++num;
            if(num == n) break;
            m = num;
        }
        for(int i = 1; i <= n; i++) rk[i] = x[i];
        int h = 0;
        for(int i = 1; i <= n; i++) {
            if(rk[i] == 1) continue;
            if(h) h--;
            int j = sa[rk[i] - 1];
            while(j + h <= n && s[i + h] == s[j + h]) h++;
            H[rk[i]] = h;
        }
    }
    
    void work_contribute() {
        lg[0] = -1;
        for(int i = 1; i <= n; i++) f[i][0] = H[i], lg[i] = lg[i >> 1] + 1;
        for(int j = 1; j <= 20; j++)
            for(int i = 1; i + (1 << j) - 1 <= n; i++) 
                f[i][j] = std::min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
    }
    int getans(int l, int r) {
        if(l > r) std::swap(l, r);
        else if(l == r) return n - sa[l] + 1;
        else l++;
        int len = lg[r - l + 1];
        return std::min(f[l][len], f[r - (1 << len) + 1][len]);
    }
    
    
    void query() {
        LL ans = 0;
        int nnn = in(), mmm = in();
        for(int i = 1; i <= nnn; i++) fuck1[i] = rk[in()];
        for(int i = 1; i <= mmm; i++) fuck2[i] = rk[in()];
        std::sort(fuck1 + 1, fuck1 + nnn + 1);
        std::sort(fuck2 + 1, fuck2 + mmm + 1);
        for(int i = 1, j = 1; i <= nnn; i++) {
            if(i == 1) t.clr();
            else {
                int lcp = getans(fuck1[i - 1], fuck1[i]), tmp = 0;
                tmp = t.query(lcp + 1, n);
                if(lcp) t.lazy(lcp, tmp);
            }
            while(j <= mmm && fuck2[j] <= fuck1[i]) t.lazy(getans(fuck2[j], fuck1[i]), 1), j++;
            ans += t.getans();
        }
        for(int i = 1, j = 1; i <= mmm; i++) {
            if(i == 1) t.clr();
            else {
                int lcp = getans(fuck2[i - 1], fuck2[i]), tmp = 0;
                tmp = t.query(lcp + 1, n);
                if(lcp) t.lazy(lcp, tmp);
            }
            while(j <= nnn && fuck1[j] < fuck2[i]) t.lazy(getans(fuck1[j], fuck2[i]), 1), j++;
            while(j <= nnn && fuck1[j] <= fuck2[i]) t.lazy(getans(fuck1[j], fuck2[i]), 1), ans -= getans(fuck1[j], fuck2[i]), j++; 
            ans += t.getans();
        }	
        printf("%lld
    ", ans);
    }
                    
    int main() {
    
        n = in(), T = in();
        t.build(n);
        scanf("%s", s + 1);
        predoit();
        work_contribute();
        while(T --> 0) query();
        return 0;
    }
    
  • 相关阅读:
    GCD 信号量使用记录
    使用AFNetWorking 上传文件/图片
    iOS 13 使用LaunchScreen.storyboard设置启动图注意事项
    clipsToBounds和masksToBounds的区别?
    react-native 单页面界面横屏(带导航栏的V5.0不支持,V4.0,V3.0支持)
    react-native 5.0导航栏配置
    使用SSZipArchive 注意事项
    iOS 相册照片heic (实况)
    react-native 集成Code-Push的常用命令
    Java基础知识学习02-运算符、循环语句、break、continue
  • 原文地址:https://www.cnblogs.com/olinr/p/10363022.html
Copyright © 2011-2022 走看看