给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入: 2 / 1 3 输出: true
示例 2:
输入: 5 / 1 4 / 3 6 输出: false 解释: 输入为: [5,1,4,null,null,3,6]。 根节点的值为 5 ,但是其右子节点值为 4 。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ /* 算法思想: 采用递归的方法,利用它本身的性质来做,即左<根<右,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件。 */ //算法实现: class Solution { public: bool isValidBST(TreeNode *root) { return isValidBST(root, LONG_MIN, LONG_MAX); } bool isValidBST(TreeNode *root, long mn, long mx) { if (!root) return true; if (root->val <= mn || root->val >= mx) return false; return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx); } }; /* 算法思想: 采用迭代的方法,值得注意的是,对于二叉搜索树,我们可以通过中序遍历得到一个递增的有序序列。因此,中序遍历是二叉搜索树中最常用的遍历方法。故而对树进行非递归中序遍历并判断是否满足左<根<右。 */ //算法实现: class Solution { public: bool isValidBST(TreeNode* root) { stack<TreeNode*> s; TreeNode *p = root, *pre = NULL; while (p || !s.empty()) { while (p) { s.push(p); p = p->left; } TreeNode *t = s.top(); s.pop(); if (pre && t->val <= pre->val) return false; pre = t; p = t->right; } return true; } };