zoukankan      html  css  js  c++  java
  • AtCoder Beginner Contest 142【D题】【判断素数的模板+求一个数的因子的模板】

    D - Disjoint Set of Common Divisors

    Problem Statement

    Given are positive integers AA and BB.

    Let us choose some number of positive common divisors of AA and BB.

    Here, any two of the chosen divisors must be coprime.

    At most, how many divisors can we choose?

    Definition of common divisorDefinition of being coprimeDefinition of dividing

    Constraints

    • All values in input are integers.
    • 1A,B10121≤A,B≤1012

    Input

    Input is given from Standard Input in the following format:

    AA BB
    

    Output

    Print the maximum number of divisors that can be chosen to satisfy the condition.


    Sample Input 1 Copy

    Copy
    12 18
    

    Sample Output 1 Copy

    Copy
    3
    

    1212 and 1818 have the following positive common divisors: 112233, and 66.

    11 and 22 are coprime, 22 and 33 are coprime, and 33 and 11 are coprime, so we can choose 1122, and 33, which achieve the maximum result.


    Sample Input 2 Copy

    Copy
    420 660
    

    Sample Output 2 Copy

    Copy
    4
    

    Sample Input 3 Copy

    Copy
    1 2019
    

    Sample Output 3 Copy

    Copy
    1
    

    11 and 20192019 have no positive common divisors other than 1

    思路:找出有多少个公因子,并且公因子必须是素数。然后再加一。【比赛时思路一模一样,代码写挫了QAQ】

    AC代码:

     1 #include<bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define int long long
     6 bool isprime(int num){ // 判断是否是素数
     7     if(num==1){
     8         return false;
     9     }
    10     if(num==2)
    11         return true;
    12     if(num%2==0)
    13         return false;
    14     double sqrtNum = sqrt(num);
    15     for (int  i = 3; i <= sqrtNum; i += 2)
    16     {
    17         if (num % i == 0)
    18         {
    19             return false;
    20         }
    21     }
    22     return true;
    23 }
    24 vector<int> v;
    25 signed main(){
    26     int n,m;
    27     cin>>n>>m;
    28     int temp=min(n,m);
    29     for(int i=1;i*i<=temp;i++){ // 求一个数的因子的模板
    30         if(temp%i==0){
    31             v.push_back(i);
    32             if(i*i!=temp){
    33                 v.push_back(temp/i);
    34             }
    35         }
    36     }
    37     int ans=0;
    38     int t=max(n,m);
    39     for(int i=0;i<v.size();i++){
    40         if(t%v[i]==0&&isprime(v[i]))
    41             ans++;
    42     }
    43     cout<<ans+1;
    44     return 0;
    45 }
  • 相关阅读:
    Elasticsearch 6.x版本全文检索学习之数据建模
    Elasticsearch 6.x版本全文检索学习之集群调优建议
    Elasticsearch 6.x版本全文检索学习之聚合分析入门
    SpringCloud的入门学习之Eureka(高可用注册中心HA)构建Provider服务、Consumer服务
    SpringCloud的入门学习之Netflix-eureka(Eureka的集群版搭建)
    Elasticsearch 6.x版本全文检索学习之Search的运行机制
    ERP入门
    NoSQL数据库介绍
    傅立叶变换的物理意义
    电容的基础知识
  • 原文地址:https://www.cnblogs.com/pengge666/p/11606647.html
Copyright © 2011-2022 走看看