官方文档: https://radimrehurek.com/gensim/models/word2vec.html
1、训练模型定义
from gensim.models import word2vec sentences = word2vec.Text8Corpus(r'user.txt') word2vec = gensim.models.word2vec.Word2Vec(sentences, size=100, hs=1, min_count=1, window=3) word2vec.save('word2vec_te')
参数解释:
1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。
2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。
3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。
4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。
5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。
6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。
7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。
模型导出
word2vec = gensim.models.word2vec.Word2Vec(sentences(), size=256, window=10, min_count=64, sg=1, hs=1, iter=10, workers=25)
word2vec.save('word2vec_wx')
模型导入
model = gensim.models.Word2Vec.load('xxx/word2vec_wx')
pd.Series(model.most_similar(u'微信',topn = 360000))
gensim.models.Word2Vec.load的办法导入
其中的Numpy,可以用numpy.load:
import numpy
word_2x = numpy.load('xxx/word2vec_wx.wv.syn0.npy')
还有其他的导入方式:
from gensim.models.keyedvectors import KeyedVectors
word_vectors = KeyedVectors.load_word2vec_format('/tmp/vectors.txt', binary=False) # C text format
word_vectors = KeyedVectors.load_word2vec_format('/tmp/vectors.bin', binary=True) # C binary format
增量训练
model = gensim.models.Word2Vec.load('/tmp/mymodel')
model.train(more_sentences)
gensim训练好的word2vec使用
1、相似性
持数种单词相似度任务:
相似词+相似系数(model.most_similar)、model.doesnt_match、model.similarity(两两相似)
model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
[('queen', 0.50882536)]
model.doesnt_match("breakfast cereal dinner lunch".split())
'cereal'
model.similarity('woman', 'man')
.73723527
词向量
通过以下方式来得到单词的向量:
model['computer'] # raw NumPy vector of a word
array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)
可视化展示
import gensim import numpy from gensim.models import word2vec from sklearn.decomposition import PCA from matplotlib import pyplot # import pandas as pd pyplot.rcParams['font.sans-serif'] = ['SimHei'] # model = gensim.models.Word2Vec.load('word2vec_wx') model = gensim.models.Word2Vec.load('word2vec_te') # model.train(more_sentences) # pd.Series(model.most_similar(u'微信'),topn=360000) # for i in model.most_similar(u'教育'): # print(i) # for i in model['教育']: # print(i) # 基于2d PCA拟合数据 X = model[model.wv.vocab] pca = PCA(n_components=2) result = pca.fit_transform(X) # 可视化展示 pyplot.scatter(result[:, 0], result[:, 1]) words = list(model.wv.vocab) for i, word in enumerate(words): pyplot.annotate(word, xy=(result[i, 0], result[i, 1])) pyplot.show()