zoukankan      html  css  js  c++  java
  • Google Tensorflow 源码编译(三):tensorflow<v0.5.0>

    这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来。供大家想源码安装的参考。

    安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像。

    Build Tensorflow for IBM POWER8 CPU from Source Code

    1. My os environment
      14.04.1-Ubuntu SMP
      ppc64le
      gcc 4.8.4
      python 2.7.6

    2. Install bazel and protobuf
      I only have openjdk-7. so I installed bazel 0.1.0, and bazel 0.1.0 needs protobuf v3.0.0-alpha-3, you can refer to “Build Bazel<v0.1.0> for IBM POWER8 CPU from Source Code" for the installation.

    3. Install other dependencies
      sudo apt-get install python-pip python-dev python-numpy
      sudo apt-get install swig

    4. get source code
      git clone --recurse-submodules https://github.com/tensorflow/tensorflow

    5. modify ~/.bazelrc
      add build options #you can visit http://bazel.io/docs/bazel-user-manual.html to find these options' descriptions
      to build in standalone : --spawn_strategy=standalone --genrule_strategy=standalone
      to limit cpu and ram usage : --jobs=20 --ram_utilization_factor percentage=30

    6. build source code

      ./configure (select GPU or CPU)
      bazel build -c opt  //tensorflow/cc:tutorials_example_trainer

    7. Create the pip package and install
    7.1 generate tensorflow whl package
      if you wan to use tensorflow in python, a pip package should be created
      $ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
      # or build with GPU support:
      $ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
      after a night, a message displayed:
      Target //tensorflow/tools/pip_package:build_pip_package up-to-date:
      bazel-bin/tensorflow/tools/pip_package/build_pip_package
      INFO: Elapsed time: 32556.820s, Critical Path: 31793.39s

      bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

    7.2 tensorflow whl package path
      opuser@nova:~/tensorflow/tensorflow$ ls /tmp/tensorflow_pkg/
      tensorflow-0.5.0-cp27-none-linux_ppc64le.whl
    7.3 install whl package using pip
      opuser@nova:~/tensorflow/tensorflow$ sudo pip install /tmp/tensorflow_pkg/tensorflow-0.5.0-cp27-none-linux_ppc64le.whl
    7.4 tensflow installed package path
      opuser@nova:~/tensorflow/tensorflow/tensorflow/models/image/mnist$ ls /usr/local/lib/python2.7/dist-packages
      tensorflow tensorflow-0.5.0.dist-info
    7.5 train a mnist dataset(#sudo is needed)
      # You can alternatively pass the path to the model program file to the python interpreter.
      opuser@nova:~$ sudo python /usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py
      Succesfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
      Succesfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
      Succesfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
      Succesfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
      Extracting data/train-images-idx3-ubyte.gz
      Extracting data/train-labels-idx1-ubyte.gz
      Extracting data/t10k-images-idx3-ubyte.gz
      Extracting data/t10k-labels-idx1-ubyte.gz
      can't determine number of CPU cores: assuming 4
      I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
      can't determine number of CPU cores: assuming 4
      I tensorflow/core/common_runtime/direct_session.cc:60] Direct session inter op parallelism threads: 4
      Initialized!
      Epoch 0.00
      Minibatch loss: 12.054, learning rate: 0.010000
      Minibatch error: 90.6%
      Validation error: 84.6%
      Minibatch loss: 3.289, learning rate: 0.010000
      ......


    8. problems during compiling
    <Error: gcc: internal compiler error: Killed, com.google.devtools.build.lib.shell.BadExitStatusException: Process exited with status 4.
    >
      This is due to the lack of cpu ram or swap. you can modify --jobs value or --ram_utilization_factor value . or check if there is any process that occupies large ram. and kill it. It happends to me that there may exist two bazel servers. so I need to kill one.

    9. reference
    tensorflow/tensorflow/g3doc/get_started/os_setup.md
    https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md

    bazel-user-manual.html
    http://bazel.io/docs/bazel-user-manual.html

    cuda or cudnn version dismatch

    https://github.com/tensorflow/tensorflow/issues/125

  • 相关阅读:
    小白的进阶之路7
    小白的进阶之路6
    小白的进阶之路5
    小白的进阶之路4
    小白的进阶之路3
    小白的进阶之路2
    小白的进阶之路1
    02CSS布局13
    02css定位12
    02css盒子模型11
  • 原文地址:https://www.cnblogs.com/rodenpark/p/5007874.html
Copyright © 2011-2022 走看看