zoukankan      html  css  js  c++  java
  • 【机器学习】TensorFlow学习(一)

    感谢中国人民大学胡鹤老师,课讲得非常好~

    首先,何谓tensor?即高维向量,例如矩阵是二维,tensor是更广义意义上的n维向量(有type+shape)

    TensorFlow执行过程为定义图,其中定义子节点,计算时只计算所需节点所依赖的节点,是一种高效且适应大规模的数据计算,方便分布式设计,对于复杂神经网络的计算,可将其拆开到其他核中同时计算。

    Theano——torch———caffe(尤其是图像处理)——deeplearning5j——H20——MXNet,TensorFlow

    运行环境

    下载docker

    打开docker quickstart terminal

    标红地方显示该docker虚拟机IP地址(即之后的localhost)

    docker tensorflow/tensorflow  //自动找到TensorFlow容器并下载

    docker images  //浏览当前容器

    docker run -p 8888:8888 tensorflow/tensorflow  //在8888端口运行

    会出现一个token,复制该链接并替换掉localhost,既可以打开TensorFlow的一个编写器,jupyter

    大体雏形

    #python导入
    import tensorflow as tf
    #定义变量(节点)
    x = tf.Variable(3, name="x")
    y = tf.Variable(4, name="y")
    f = x*x*y + y + 2
    #定义session
    sess = tf.Session()
    #为已经定义的节点赋值
    sess.run(x.initializer)
    sess.run(y.initializer)
    #运行session
    result = sess.run(f)
    print(result)  #42
    #释放空间
    sess.close

    还有一个更简洁的一种定义并运行session方法

    # a better way
    with tf.Session() as sess:
        x.initializer.run()
        y.initializer.run()
        #即evaluate,求解f的值
        result = f.eval()

    初始化的两行也可以写作

    init = tf.global_variables_initializer()

    init.run()

    而session可以改作sess=tf.InteractiveSession()运行起来更方便

    init = tf.global_variables_initializer()
    sess = tf.InteractiveSession()
    init.run()
    result = f.eval()
    print(result)

    因而TensorFlow的代码分为两部分,定义部分和执行部分

    TensorFlow是一个图的操作,有自动缺省的默认图和你自己定义的图

    #系统默认缺省的图
    >>> x1 = tf.Variable(1)
    >>> x1.graph is tf.get_default_graph()
    True
    #自定义的图
    >>> graph = tf.Graph()
    >>> with graph.as_default():
    x2 = tf.Variable(2)
    >>> x2.graph is graph
    True
    >>> x2.graph is tf.get_default_graph()
    False

    节点的生命周期

    第二种方法可以找出公共部分,避免x被计算2次。

    运行结束后所有节点的值都被清空,如果没有单独保存,还需重新run一遍。

    w = tf.constant(3)
    x = w + 2
    y = x + 5
    z = x * 3
    with tf.Session() as sess:
        print(y.eval()) # 10
        print(z.eval()) # 15
    
    with tf.Session() as sess:
        y_val, z_val = sess.run([y, z])
        print(y_val) # 10
        print(z_val) # 15

     Linear Regression with TensorFlow(线性回归上的应用)

    y = wx+b = wx'  //这里x'是相较于x多了一维全是1的向量

    这里引用California housing的数据

    TensorFlow上向量是列向量,需要reshape(-1,1)即转置成列向量

    使用normal equation方法求解

    import numpy as np
    from sklearn.datasets import fetch_california_housing
    housing = fetch_california_housing()
    #获得数据维度,矩阵的行列长度
    m, n = housing.data.shape
    #np.c_是连接的含义,加了一个全为1的维度
    housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data]
    #数据量并不大,可以直接用常量节点装载进来,但是之后海量数据无法使用(会用minbatch的方式导入数据)
    X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name="X")
    #转置成列向量
    y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
    XT = tf.transpose(X)
    #使用normal equation的方法求解theta,之前线性模型中有提及
    theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)
    #求出权重
    with tf.Session() as sess:
        theta_value = theta.eval()

    如果是原本的方法,可能更直接些。但由于使用底层的库不同,它们计算出来的值不完全相同。

    #使用numpy
    X = housing_data_plus_bias
    y = housing.target.reshape(-1, 1)
    theta_numpy = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
    #使用sklearn
    from sklearn.linear_model import LinearRegression
    lin_reg = LinearRegression()
    lin_reg.fit(housing.data, housing.target.reshape(-1, 1))

    这里不禁感到疑惑,为什么TensorFlow感觉变复杂了呢?其实,这不过因为这里数据规模较小,进行大规模的计算时,TensorFlow的自动优化所发挥的效果,是十分厉害的。

    使用gradient descent(梯度下降)方法求解

    #使用gradient时需要scale一下
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    scaled_housing_data = scaler.fit_transform(housing.data)
    scaled_housing_data_plus_bias = np.c_[np.ones((m, 1)), scaled_housing_data]
    #迭代1000次
    n_epochs = 1000
    learning_rate = 0.01
    #由于使用gradient,写入x的值需要scale一下
    X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
    y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
    #使用gradient需要有一个初值
    theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
    #当前预测的y,x是m*(n+1),theta是(n+1)*1,刚好是y的维度
    y_pred = tf.matmul(X, theta, name="predictions")
    #整体误差
    error = y_pred - y
    #TensorFlow求解均值功能强大,可以指定维数,也可以像下面方法求整体的
    mse = tf.reduce_mean(tf.square(error), name="mse")
    #暂时自己写出训练过程,实际可以采用TensorFlow自带的功能更强大的自动求解autodiff方法
    gradients = 2/m * tf.matmul(tf.transpose(X), error)
    training_op = tf.assign(theta, theta - learning_rate * gradients)
    #初始化并开始求解
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(n_epochs):
            #每运行100次打印一下当前平均误差
            if epoch % 100 == 0:
                print("Epoch", epoch, "MSE =", mse.eval())
            sess.run(training_op)
        best_theta = theta.eval()

    上述代码中的autodiff如下,可以自动求出gradient

    gradients = tf.gradients(mse, [theta])[0]

     使用Optimizer

    上述的整个梯度下降和迭代方法,都封装了在如下方法中

     optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

     training_op = optimizer.minimize(mse) 

     这样的optimizer还有很多

    例如带冲量的optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9)

     Feeding data to training algorithm

     当数据量达到几G,几十G时,使用constant直接导入数据显然是不现实的,因而我们用placeholder做一个占位符

    (一般行都是none,即数据量是任意的)

     真正运行,run的时候再feed数据。可以不断使用新的数据。

    >>> A = tf.placeholder(tf.float32, shape=(None, 3))
    >>> B = A + 5
    >>> with tf.Session() as sess:
    ... B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})
    ... B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})
    ...
    >>> print(B_val_1)
    [[ 6. 7. 8.]]
    >>> print(B_val_2)
    [[ 9. 10. 11.]
    [ 12. 13. 14.]]

    这样,就可以通过定义min_batch来分批次随机抽取指定数量的数据,即便是几T的数据也可以抽取。

    batch_size = 100
    n_batches = int(np.ceil(m / batch_size))
    #有放回的随机抽取数据
    def fetch_batch(epoch, batch_index, batch_size):
        #定义一个随机种子
        np.random.seed(epoch * n_batches + batch_index)  # not shown in the book
        indices = np.random.randint(m, size=batch_size)  # not shown
        X_batch = scaled_housing_data_plus_bias[indices] # not shown
        y_batch = housing.target.reshape(-1, 1)[indices] # not shown
        return X_batch, y_batch
    #开始运行
    with tf.Session() as sess:
        sess.run(init)
    #每次都抽取新的数据做训练
        for epoch in range(n_epochs):
            for batch_index in range(n_batches):
                X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
                sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
    #最终结果
        best_theta = theta.eval()

    Saving and Restoring models(保存模型)

    有时候,运行几天的模型可能因故暂时无法继续跑下去,因而需要暂时保持已训练好的部分模型到硬盘上。

    init = tf.global_variables_initializer()
    saver = tf.train.Saver()
    #保存模型
    with tf.Session() as sess:
        sess.run(init)
    
        for epoch in range(n_epochs):
            if epoch % 100 == 0:
                #print("Epoch", epoch, "MSE =", mse.eval()) 
                save_path = saver.save(sess, "/tmp/my_model.ckpt")
            sess.run(training_op)
        
        best_theta = theta.eval()
        save_path = saver.save(sess, "/tmp/my_model_final.ckpt")
    #恢复模型
    with tf.Session() as sess:
        saver.restore(sess, "/tmp/my_model_final.ckpt")
        best_theta_restored = theta.eval() 

    关于TensorBoard

    众所周知,神经网络和机器学习大多是黑盒模型,让人有点忐忑。TensorBoard所起的功能就是将这个黑盒稍微变白一些~

    启用tensorboard

    输入docker ps查看当前容器id

    进入容器

     

    使用tensorboard --log-dir=tf_logs命令打开已经存入的tf_logs文件,其生成代码如下所示

    from datetime import datetime
    
    now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
    root_logdir = "tf_logs"
    logdir = "{}/run-{}/".format(root_logdir, now)
    ...
    mse_summary = tf.summary.scalar('MSE', mse)
    file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())
    ...
    if batch_index % 10 == 0:
                    summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})
                    step = epoch * n_batches + batch_index
                    file_writer.add_summary(summary_str, step)

     

  • 相关阅读:
    又过了一周
    本周学习情况
    5.12
    一周回顾
    npm修改全局包安装路径
    热力图之heatmap
    前端的发展历程
    idea打开maven项目没有别识别是maven项目
    nginx下部署vue项目
    WEB前端开发NodeJS
  • 原文地址:https://www.cnblogs.com/rucwxb/p/7824875.html
Copyright © 2011-2022 走看看