感谢中国人民大学胡鹤老师,课讲得非常好~
首先,何谓tensor?即高维向量,例如矩阵是二维,tensor是更广义意义上的n维向量(有type+shape)
TensorFlow执行过程为定义图,其中定义子节点,计算时只计算所需节点所依赖的节点,是一种高效且适应大规模的数据计算,方便分布式设计,对于复杂神经网络的计算,可将其拆开到其他核中同时计算。
Theano——torch———caffe(尤其是图像处理)——deeplearning5j——H20——MXNet,TensorFlow
运行环境
下载docker
打开docker quickstart terminal
标红地方显示该docker虚拟机IP地址(即之后的localhost)
docker tensorflow/tensorflow //自动找到TensorFlow容器并下载
docker images //浏览当前容器
docker run -p 8888:8888 tensorflow/tensorflow //在8888端口运行
会出现一个token,复制该链接并替换掉localhost,既可以打开TensorFlow的一个编写器,jupyter
大体雏形
#python导入 import tensorflow as tf #定义变量(节点) x = tf.Variable(3, name="x") y = tf.Variable(4, name="y") f = x*x*y + y + 2 #定义session sess = tf.Session() #为已经定义的节点赋值 sess.run(x.initializer) sess.run(y.initializer) #运行session result = sess.run(f) print(result) #42 #释放空间 sess.close
还有一个更简洁的一种定义并运行session方法
# a better way with tf.Session() as sess: x.initializer.run() y.initializer.run() #即evaluate,求解f的值 result = f.eval()
初始化的两行也可以写作
init = tf.global_variables_initializer()
init.run()
而session可以改作sess=tf.InteractiveSession()运行起来更方便
init = tf.global_variables_initializer() sess = tf.InteractiveSession() init.run() result = f.eval() print(result)
因而TensorFlow的代码分为两部分,定义部分和执行部分
TensorFlow是一个图的操作,有自动缺省的默认图和你自己定义的图
#系统默认缺省的图 >>> x1 = tf.Variable(1) >>> x1.graph is tf.get_default_graph() True #自定义的图 >>> graph = tf.Graph() >>> with graph.as_default(): x2 = tf.Variable(2) >>> x2.graph is graph True >>> x2.graph is tf.get_default_graph() False
节点的生命周期
第二种方法可以找出公共部分,避免x被计算2次。
运行结束后所有节点的值都被清空,如果没有单独保存,还需重新run一遍。
w = tf.constant(3) x = w + 2 y = x + 5 z = x * 3 with tf.Session() as sess: print(y.eval()) # 10 print(z.eval()) # 15 with tf.Session() as sess: y_val, z_val = sess.run([y, z]) print(y_val) # 10 print(z_val) # 15
Linear Regression with TensorFlow(线性回归上的应用)
y = wx+b = wx' //这里x'是相较于x多了一维全是1的向量
这里引用California housing的数据
TensorFlow上向量是列向量,需要reshape(-1,1)即转置成列向量
使用normal equation方法求解
import numpy as np from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() #获得数据维度,矩阵的行列长度 m, n = housing.data.shape #np.c_是连接的含义,加了一个全为1的维度 housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data] #数据量并不大,可以直接用常量节点装载进来,但是之后海量数据无法使用(会用minbatch的方式导入数据) X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name="X") #转置成列向量 y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y") XT = tf.transpose(X) #使用normal equation的方法求解theta,之前线性模型中有提及 theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y) #求出权重 with tf.Session() as sess: theta_value = theta.eval()
如果是原本的方法,可能更直接些。但由于使用底层的库不同,它们计算出来的值不完全相同。
#使用numpy X = housing_data_plus_bias y = housing.target.reshape(-1, 1) theta_numpy = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y) #使用sklearn from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(housing.data, housing.target.reshape(-1, 1))
这里不禁感到疑惑,为什么TensorFlow感觉变复杂了呢?其实,这不过因为这里数据规模较小,进行大规模的计算时,TensorFlow的自动优化所发挥的效果,是十分厉害的。
使用gradient descent(梯度下降)方法求解
#使用gradient时需要scale一下 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_housing_data = scaler.fit_transform(housing.data) scaled_housing_data_plus_bias = np.c_[np.ones((m, 1)), scaled_housing_data] #迭代1000次 n_epochs = 1000 learning_rate = 0.01 #由于使用gradient,写入x的值需要scale一下 X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X") y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y") #使用gradient需要有一个初值 theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta") #当前预测的y,x是m*(n+1),theta是(n+1)*1,刚好是y的维度 y_pred = tf.matmul(X, theta, name="predictions") #整体误差 error = y_pred - y #TensorFlow求解均值功能强大,可以指定维数,也可以像下面方法求整体的 mse = tf.reduce_mean(tf.square(error), name="mse") #暂时自己写出训练过程,实际可以采用TensorFlow自带的功能更强大的自动求解autodiff方法 gradients = 2/m * tf.matmul(tf.transpose(X), error) training_op = tf.assign(theta, theta - learning_rate * gradients) #初始化并开始求解 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(n_epochs): #每运行100次打印一下当前平均误差 if epoch % 100 == 0: print("Epoch", epoch, "MSE =", mse.eval()) sess.run(training_op) best_theta = theta.eval()
上述代码中的autodiff如下,可以自动求出gradient
gradients = tf.gradients(mse, [theta])[0]
使用Optimizer
上述的整个梯度下降和迭代方法,都封装了在如下方法中
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(mse)
这样的optimizer还有很多
例如带冲量的optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9)
Feeding data to training algorithm
当数据量达到几G,几十G时,使用constant直接导入数据显然是不现实的,因而我们用placeholder做一个占位符
(一般行都是none,即数据量是任意的)
真正运行,run的时候再feed数据。可以不断使用新的数据。
>>> A = tf.placeholder(tf.float32, shape=(None, 3)) >>> B = A + 5 >>> with tf.Session() as sess: ... B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]}) ... B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]}) ... >>> print(B_val_1) [[ 6. 7. 8.]] >>> print(B_val_2) [[ 9. 10. 11.] [ 12. 13. 14.]]
这样,就可以通过定义min_batch来分批次随机抽取指定数量的数据,即便是几T的数据也可以抽取。
batch_size = 100 n_batches = int(np.ceil(m / batch_size)) #有放回的随机抽取数据 def fetch_batch(epoch, batch_index, batch_size): #定义一个随机种子 np.random.seed(epoch * n_batches + batch_index) # not shown in the book indices = np.random.randint(m, size=batch_size) # not shown X_batch = scaled_housing_data_plus_bias[indices] # not shown y_batch = housing.target.reshape(-1, 1)[indices] # not shown return X_batch, y_batch #开始运行 with tf.Session() as sess: sess.run(init) #每次都抽取新的数据做训练 for epoch in range(n_epochs): for batch_index in range(n_batches): X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size) sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) #最终结果 best_theta = theta.eval()
Saving and Restoring models(保存模型)
有时候,运行几天的模型可能因故暂时无法继续跑下去,因而需要暂时保持已训练好的部分模型到硬盘上。
init = tf.global_variables_initializer() saver = tf.train.Saver() #保存模型 with tf.Session() as sess: sess.run(init) for epoch in range(n_epochs): if epoch % 100 == 0: #print("Epoch", epoch, "MSE =", mse.eval()) save_path = saver.save(sess, "/tmp/my_model.ckpt") sess.run(training_op) best_theta = theta.eval() save_path = saver.save(sess, "/tmp/my_model_final.ckpt")
#恢复模型 with tf.Session() as sess: saver.restore(sess, "/tmp/my_model_final.ckpt") best_theta_restored = theta.eval()
关于TensorBoard
众所周知,神经网络和机器学习大多是黑盒模型,让人有点忐忑。TensorBoard所起的功能就是将这个黑盒稍微变白一些~
启用tensorboard
输入docker ps查看当前容器id
进入容器
使用tensorboard --log-dir=tf_logs命令打开已经存入的tf_logs文件,其生成代码如下所示
from datetime import datetime now = datetime.utcnow().strftime("%Y%m%d%H%M%S") root_logdir = "tf_logs" logdir = "{}/run-{}/".format(root_logdir, now) ... mse_summary = tf.summary.scalar('MSE', mse) file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph()) ... if batch_index % 10 == 0: summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch}) step = epoch * n_batches + batch_index file_writer.add_summary(summary_str, step)