zoukankan      html  css  js  c++  java
  • Tensorflow&CNN:裂纹分类

    版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90478551

    - 写在前面



      本科毕业设计终于告一段落了。特写博客记录做毕业设计(路面裂纹识别)期间的踩过的坑和收获。希望对你有用。

      目前有:

        1.Tensorflow&CNN:裂纹分类

        2.Tensorflow&CNN:验证集预测与模型评价

        3.PyQt5多个GUI界面设计

      本篇讲CNN的训练与预测(以裂纹分类为例)。任务目标:将裂纹图片数据集自动分类:纵向裂纹、横向裂纹、块状裂纹、龟裂裂纹、无裂纹共五类。

    ​ ​
      本篇主要参照博客tensorflow: 花卉分类

    - 环境配置安装


    ​ ​
      运行环境:Python3.6、Spyder

    ​ ​
      依赖模块:Skimage、Tensorflow(CPU)、Numpy 、Matlpotlib、Cv2等

    - 开始工作


    1.CNN架构

    ​ ​
      所使用的CNN架构如下:

    ​ ​
      一共有十三层。

    2.训练

    ​ ​
      所使用的训练代码如下:

    from skimage import io,transform
    import glob
    import os
    import tensorflow as tf
    import numpy as np
    import time
    import matplotlib.pyplot as plt
    import pandas as pd
    
    
    start_time = time.time()
    tf.reset_default_graph()   #清除过往tensorflow数据记录
    #训练图片集地址
    path='..//img5//'
    
    #将所有的图片resize成100*100
    w=100
    h=100
    c=3
    #归一化
    def normlization(img):
        X=img.copy()
        X1= np.mean(X, axis = 0) # 减去均值,使得以0为中心
        X2=X-X1
        X3= np.std(X2, axis = 0) # 归一化
        X4=X2/X3
        return X4
    
    #读取图片
    def read_img(path):
        cate=[path+x for x in os.listdir(path)]
        imgs=[]
        labels=[]
        for idx,folder in enumerate(cate):
            for im in glob.glob(folder+'/*.jpg'):
                #print('reading the images:%s'%(im))
                img=io.imread(im)
                img=transform.resize(img,(w,h))
                #img=normlization(img)
                imgs.append(img)
                labels.append(idx)
        return np.asarray(imgs,np.float32),np.asarray(labels,np.int32)
    data,label=read_img(path)
    
    
    #打乱顺序
    num_example=data.shape[0]
    arr=np.arange(num_example)
    np.random.shuffle(arr)
    data=data[arr]
    label=label[arr]
    
    
    
    #将所有数据分为训练集和验证集
    ratio=0.8
    s=np.int(num_example*ratio)
    x_train=data[:s]
    y_train=label[:s]
    x_val=data[s:]
    y_val=label[s:]
    
    #-----------------构建网络----------------------
    #占位符
    x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')
    y_=tf.placeholder(tf.int32,shape=[None,],name='y_')
    
    def inference(input_tensor, train, regularizer):
        with tf.variable_scope('layer1-conv1'):
            conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
            conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
    
        with tf.name_scope("layer2-pool1"):
            pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID")
    
        with tf.variable_scope("layer3-conv2"):
            conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
            conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
    
        with tf.name_scope("layer4-pool2"):
            pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
    
        with tf.variable_scope("layer5-conv3"):
            conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
            conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))
    
        with tf.name_scope("layer6-pool3"):
            pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
    
        with tf.variable_scope("layer7-conv4"):
            conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
            conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))
    
        with tf.name_scope("layer8-pool4"):
            pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
            nodes = 6*6*128
            reshaped = tf.reshape(pool4,[-1,nodes])
    
        with tf.variable_scope('layer9-fc1'):
            fc1_weights = tf.get_variable("weight", [nodes, 1024],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
            fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))
    
            fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
            if train: fc1 = tf.nn.dropout(fc1, 0.5)
    
        with tf.variable_scope('layer10-fc2'):
            fc2_weights = tf.get_variable("weight", [1024, 512],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
            fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))
    
            fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
            if train: fc2 = tf.nn.dropout(fc2, 0.5)
    
        with tf.variable_scope('layer11-fc3'):
            fc3_weights = tf.get_variable("weight", [512, 5],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))
            fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1))
            logit = tf.matmul(fc2, fc3_weights) + fc3_biases
    
        return logit
    
    #训练参数
    n_epoch=14                                            
    batch_size=32                                                                  
    batch_size2=32
    learning_rate=0.001
    
    #---------------------------网络结束---------------------------
    regularizer = tf.contrib.layers.l2_regularizer(0.0001)
    logits = inference(x,False,regularizer)
    
    #(小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor
    b = tf.constant(value=1,dtype=tf.float32)
    logits_eval = tf.multiply(logits,b,name='logits_eval') 
    
    # 利用交叉熵定义损失
    loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)
    mean_loss = tf.reduce_mean(loss)  # 平均损失
    train_op=tf.train.AdamOptimizer(learning_rate).minimize(loss)
    correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)    
    acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    
    #定义一个函数,按批次取数据
    def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
        assert len(inputs) == len(targets)
        if shuffle:
            indices = np.arange(len(inputs))
            np.random.shuffle(indices)
        for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
            if shuffle:
                excerpt = indices[start_idx:start_idx + batch_size]
            else:
                excerpt = slice(start_idx, start_idx + batch_size)
            yield inputs[excerpt], targets[excerpt]
    
    
    
    
    saver=tf.train.Saver()
    sess=tf.Session()  
    sess.run(tf.global_variables_initializer())
    traloss,traacc,valloss,valacc=[],[],[],[]
    for epoch in range(n_epoch):
        #training
        train_loss, train_acc, n_batch = [],[], 0
        for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
            _,err,ac=sess.run([train_op,mean_loss,acc], feed_dict={x: x_train_a, y_: y_train_a})
            train_loss.append(err); train_acc.append(ac); n_batch += 1
        tra_loss=round(np.sum(train_loss)/ n_batch,3)
        tra_acc=round(np.sum(train_acc)/ n_batch,3)
        traloss.append(tra_loss)
        traacc.append(tra_acc)
        print("epoch: %d    train loss: %.3f    train acc: %.3f"%(epoch,tra_loss,tra_acc))
    
        #validation
        validation_loss, validation_acc, n_batch = [], [], 0
        for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size2, shuffle=False):
            err, ac = sess.run([mean_loss,acc], feed_dict={x: x_val_a, y_: y_val_a})
            validation_loss.append(err); validation_acc.append(ac); n_batch += 1
        val_loss=round(np.sum(validation_loss)/ n_batch,3)
        val_acc=round(np.sum(validation_acc)/ n_batch,3)
        valloss.append(val_loss)
        valacc.append(val_acc)
        print("epoch: %d    validation loss: %.3f    validation acc: %.3f"%(epoch,val_loss,val_acc))
    
    end_time = time.time()
    print("   train loss: %f" %tra_loss)
    print("   train acc: %f" %tra_acc)
    print("   validation loss: %f" %val_loss)
    print("   validation acc: %f" %val_acc)
    print("   consume: %f s" %(end_time-start_time))
    timeArray = time.localtime(end_time)
    now=time.strftime("%Y_%m_%d", timeArray)  #时间
    saver.save(sess,".//model//model-" + str(epoch)+'-'+now)
    sess.close()
    

    3.训练记录存储

    ​ ​
      训练过程存储,主要是训练批次、训练集损失率、训练集准确率、验证集损失率、验证集准确率。

    ​ ​
      将其存入csv方法如下:

    #字典中的key值即为csv中列名
    dataframe = pd.DataFrame({'traloss':traloss,'traacc':traacc,'valloss':valloss,'valacc':valacc})
     
    #将DataFrame存储为csv,index表示是否显示行名,default=True
    dataframe.to_csv("test.csv",index=['traloss','traacc','valloss','valacc'],sep=',')
    

    ​ ​
      另外为了记录每次训练更详细信息,便于选择最合适的训练参数,需要将训练时的参数一并加以保存。使用txt方法保存:

    #数据记录
    with open('log.txt','a+')as file:
        file.write('
    '+now+'
    ')
        file.write('n_epoch:'+str(n_epoch)+'  '+
               'batch_size:'+str(batch_size)+'  '+
               'batch_size2:'+str(batch_size2)+'  '+
               'learning_rate:'+str(learning_rate)+'
    ')
        for i in range(len(traloss)):
            file.write(str(traloss[i])+','+
                   str(traacc[i])+','+
                   str(valloss[i])+','+
                   str(valacc[i])+'
    ')
    

    4.绘制训练集和验证集的损失准确率曲线

    def map_loss_acc(_type,loss,acc):
        plt.figure()
        fig, ax1 = plt.subplots()
        ax2 = ax1.twinx()
        lns1 = ax1.plot(np.arange(n_epoch), loss, label="Loss")
        lns2 = ax2.plot(np.arange(n_epoch), acc, 'r', label="Accuracy")
        ax1.set_xlabel('epoch')
        ax1.set_ylabel(_type+'loss')
        ax2.set_ylabel(_type+'accuracy')
        # 合并图例
        lns = lns1 + lns2
        labels = ["Loss", "Accuracy"]
        plt.legend(lns, labels, loc=7)
    

    ​ ​
      直接调用即可。

    map_loss_acc('training',traloss,traacc)
    map_loss_acc('validation',valloss,valacc)
    

    - 结果展示


    ​ ​
      可以看出验证集的准确率达到了92.1%,对于在数据集不足、计算力有限的情况下还是挺不错的。

  • 相关阅读:
    Axios 请求/响应拦截器,用来添加 token 和 处理响应错误
    js判断图片url地址是否404
    JavaScript使用a标签下载文件
    页面刷新或离开页面给后端发送数据
    element 上传文件 upload
    element-ui 的 el-table,点击单元格可编辑
    黑盒测试用例设计方法普及【转载】
    因果图法的介绍与示例分析【转载】
    黑盒测试用例设计方法及适用场合-2018.3.17
    大数据测试要点--转载
  • 原文地址:https://www.cnblogs.com/sc340/p/11870808.html
Copyright © 2011-2022 走看看