zoukankan      html  css  js  c++  java
  • DP01背包问题

    http://www.cppblog.com/tanky-woo/archive/2010/07/31/121803.html

    http://dongxicheng.org/structure/knapsack-problems/

    01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

    这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

    用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

    f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    把这个过程理解下:在前i件物品放进容量v的背包时,

    它有两种情况:

    第一种是第i件不放进去,这时所得价值为:f[i-1][v]

    第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

    (第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

    最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

    (这是基础,要理解!)

    这里是用二位数组存储的,可以把空间优化,用一位数组存储。

    用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。

    *这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考) 首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N 现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?

    逆序!

    这就是关键!

    1for i=1..N 2   for v=V..03        f[v]=max{f[v],

    01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

    这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

    用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

    f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    把这个过程理解下:在前i件物品放进容量v的背包时,

    它有两种情况:

    第一种是第i件不放进去,这时所得价值为:f[i-1][v]

    第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

    (第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

    最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

    (这是基础,要理解!)

    这里是用二位数组存储的,可以把空间优化,用一位数组存储。

    用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。

    *这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考) 首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N 现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?

    逆序!

    这就是关键!

    1for i=1..N
    2   for v=V..0
    3        f[v]=max{f[v],f[v-c[i]]+w[i]};
    4
    f[v-c[i]]+w[i]}; 4
     
     
    View Code
     1 #include <iostream>
     2 #include<cstdio>
     3 #include<string.h>
     4 using namespace std;
     5 int main()
     6 {
     7     int i,j,k,n,m,t,v,ve[1001],w[1001],f[1001];
     8     scanf("%d", &t);
     9     while(t--)
    10     {
    11         memset(f,0,sizeof(f));
    12         scanf("%d %d",&n,&v);
    13         for(i = 1; i <= n ; i++)
    14         scanf("%d",&ve[i]);
    15         for(i = 1; i <= n ; i++)
    16         scanf("%d",&w[i]);
    17         for(i = 1; i <= n ;i++)
    18         for(j = v ; j >= w[i] ; j--)
    19         {
    20             if(f[j]<f[j-w[i]]+ve[i])
    21             f[j] = f[j-w[i]]+ve[i];
    22         }
    23         printf("%d\n",f[v]);
    24     }
    25     return 0;
    26 }

    P01: 01背包问题            这是最基本的背包问题,每个物品最多只能放一次

    题目

    N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

    基本思路

    这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

    用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

    这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]

    注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。

    优化空间复杂度

    以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)

    先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]f[i-1][v -c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]f[v-c[i]]保存的是状态f[i -1][v-c[i]]的值。伪代码如下:

    for i=1..N

    for v=V..0

    f[v]=max{f[v],f[v-c[i]]+w[i]};

    其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

    事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

    过程ZeroOnePack,表示处理一件01背包中的物品,两个参数costweight分别表明这件物品的费用和价值。

    procedure ZeroOnePack(cost,weight)

    for v=V..cost

            f[v]=max{f[v],f[v-cost]+weight}

    注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

    有了这个过程以后,01背包问题的伪代码就可以这样写:

    for i=1..N

    ZeroOnePack(c[i],w[i]);

    初始化的细节问题

    我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求恰好装满背包时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

    如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

    如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0

    为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0nothing“恰好装满,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解什么都不装,这个解的价值为0,所以初始时状态的值也就全部为0了。

    这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

    总结

    01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

    P02: 完全背包问题           第二个基本的背包问题模型,每种物品可以放无限多次

    题目

    N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

    基本思路

    这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<= v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

    01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

    一个简单有效的优化

    完全背包问题有一个很简单有效的优化,是这样的:若两件物品ij满足c[i]<=c[j]w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

    这个优化可以简单的O(N^2)地实现,一般都可以承受。另外,针对背包问题而言,比较不错的一种方法是:首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。这个不太重要的过程就不给出伪代码了,希望你能独立思考写出伪代码或程序。

    转化为01背包问题求解

    既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c [i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。

    更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。 但我们有更优的O(VN)的算法。

    O(VN)的算法 这个算法使用一维数组,先看伪代码:

    <pre class"example">

    for i=1..N

    for v=0..V

    f[v]=max{f[v],f[v-c[i]]+w[i]};

    你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。

    这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。

    最后抽象出处理一件完全背包类物品的过程伪代码,以后会用到:

    procedure CompletePack(cost,weight)

        for v=cost..V

            f[v]=max{f[v],f[v-c[i]]+w[i]}

    总结

    完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。

    P03: 多重背包问题           每种物品有一个固定的次数上限

    题目

    N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

    基本算法

    这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1……n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:

    f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

    复杂度是O(V*Σn[i])

    转化为01背包问题

    另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]01背包中的物品,则得到了物品数为∑n[i]01背包问题,直接求解,复杂度仍然是O(V*n[i])

    但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

    方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]13,就将这种物品分成系数分别为1,2,4,6的四件物品。

    分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-12^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。

    这样就将第i种物品分成O(log n[i])种物品,将原问题转化为了复杂度为O(V*log n[i])01背包问题,是很大的改进。

    下面给出O(log amount)时间处理一件多重背包中物品的过程,其中amount表示物品的数量:

    procedure MultiplePack(cost,weight,amount)

        if cost*amount>=V

            CompletePack(cost,weight)

            return

        integer k=1

        while k<num

            ZeroOnePack(k*cost,k*weight)

            amount=amount-k

            k=k*2

        ZeroOnePack(amount*cost,amount*weight)

    希望你仔细体会这个伪代码,如果不太理解的话,不妨翻译成程序代码以后,单步执行几次,或者头脑加纸笔模拟一下,也许就会慢慢理解了。

    O(VN)的算法

    多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。

    小结

    这里我们看到了将一个算法的复杂度由O(V*n[i])改进到O(V*log n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。

  • 相关阅读:
    关于迭代器模式的个人理解
    设计模式之迭代器模式详解(foreach的精髓)
    关于备忘录模式的个人理解
    设计模式之备忘录模式详解(都市异能版)
    关于桥接模式的个人理解
    桥接模式详解(都市异能版)
    设计模式之 中介者模式
    关于命令模式个人的理解 撤销 重做的实现
    剑指offer 连续子数组的最大和
    剑指offer 删除链表中重复的结点
  • 原文地址:https://www.cnblogs.com/shangyu/p/2631890.html
Copyright © 2011-2022 走看看