原题:
Description
Today Pari and Arya are playing a game called Remainders.
Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value for any positive integer x?
Note, that means the remainder of x after dividing it by y.
Input
The first line of the input contains two integers n and k (1 ≤ n, k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).
Output
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.
Sample Input
4 5
2 3 5 12
Yes
2 7
2 3
No
提示:
以下是引用http://blog.csdn.net/aozil_yang/article/details/51812908
反证法,假设解不唯一,有x1,x2,那么x1,x2满足:
x1 % ci == x2 % ci 并且x1 % k != x2 % k,所以 (x1 - x2) % ci == 0 ,(x1-x2) % k != 0
并且lcm(c1,c2,,,,cn) % ci == 0
,所以lcm % (x1-x2) == 0.
且 (x1-x2) % k != 0;
所以lcm % k != 0
所以命题: 如果解不唯一,那么lcm % k != 0
逆否命题为: 若lcm % k == 0 那么 解唯一!
所以只需要判断lcm是否k 的整数倍,
也就是说这个问题可以转换为:
是否存在x使得 x是c1,c2,c3,,,cn,k的整数倍!
是的话就是yes,否则就是no!
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return !b ? a : gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a*b/gcd(a,b);
}
int main()
{
// printf("%d
",gcd(6,13));
int n;
ll k;
scanf("%d%I64d",&n,&k);
ll ans = 1;
bool ok = false;
for (int i = 0; i < n; ++i)
{
ll x;
scanf("%I64d",&x);
if (ans)
ans = lcm(ans,x) % k;
if (ans == 0)ok=true;
}
printf("%s
",ok? "Yes" : "No" );
return 0;
}