zoukankan      html  css  js  c++  java
  • ZOJ

    先上题目:

    Binary Search Heap Construction

    Time Limit: 5 Seconds      Memory Limit: 32768 KB

    Read the statement of problem G for the definitions concerning trees. In the following we define the basic terminology of heaps. A heap is a tree whose internal nodes have each assigned a priority (a number) such that the priority of each internal node is less than the priority of its parent. As a consequence, the root has the greatest priority in the tree, which is one of the reasons why heaps can be used for the implementation of priority queues and for sorting.

    A binary tree in which each internal node has both a label and a priority, and which is both a binary search tree with respect to the labels and a heap with respect to the priorities, is called a treap. Your task is, given a set of label-priority-pairs, with unique labels and unique priorities, to construct a treap containing this data.

    Input Specification

    The input contains several test cases. Every test case starts with an integer n. You may assume that 1<=n<=50000. Then follow n pairs of strings and numbers l1/p1,...,ln/pndenoting the label and priority of each node. The strings are non-empty and composed of lower-case letters, and the numbers are non-negative integers. The last test case is followed by a zero.

    Output Specification

    For each test case output on a single line a treap that contains the specified nodes. A treap is printed as (<left sub-treap><label>/<priority><right sub-treap>). The sub-treaps are printed recursively, and omitted if leafs.

    Sample Input

    7 a/7 b/6 c/5 d/4 e/3 f/2 g/1
    7 a/1 b/2 c/3 d/4 e/5 f/6 g/7
    7 a/3 b/6 c/4 d/7 e/2 f/5 g/1
    0
    

    Sample Output

    (a/7(b/6(c/5(d/4(e/3(f/2(g/1)))))))
    (((((((a/1)b/2)c/3)d/4)e/5)f/6)g/7)
    (((a/3)b/6(c/4))d/7((e/2)f/5(g/1)))

      题意:好像就是叫你求Treap树。给出字符串和优先值,要求建一棵二叉树,根据字符串排序,然后父亲的优先值要比儿子大。然后先序遍历输出这个Treap树。
      最水的方法就是直接先按优先值排序,然后逐个逐个元素添加。但是这样做绝对超时。
      可以通过的第一种方法:首先先按字符串大小排个序,然后从小到大扫描一次,求出每个元素左边优先值比它大的最近的元素的位置在哪。同理从大到小扫描,求出每个元素右边优先值比它大的最近的元素的位置在哪。(没错,就是单调栈),然后在每个扫描到的最近位置加一个对应的括号(左括号或者右括号)就是答案了。总的时间复杂度O(nlogn)。
      第二种方法是用RMQ求出区间优先值的最大值的下标,然后每次找出区间最大值作为根构造两边的子树就可以了。总的时间复杂度也是O(nlogn)。

      比赛的时候用的方法是第二种,但是当时求对数的时候底数不是2,所以提交一直都是段错误。

    上代码:


     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #define MAX 50002
     5 #define INF 0x3f3f3f3f
     6 using namespace std;
     7 
     8 typedef struct node{
     9     char l[200];
    10     int p;
    11 
    12     bool operator < (const node& o)const{
    13         return strcmp(l,o.l)<0;
    14     }
    15 }node;
    16 
    17 int n;
    18 node e[MAX];
    19 char ch[MAX];
    20 int l[MAX],r[MAX];
    21 int al[MAX],ar[MAX];
    22 
    23 inline void put(char c,int ti){
    24     for(int i=0;i<ti;i++) putchar(c);
    25 }
    26 
    27 int main()
    28 {
    29     char* sp;
    30     //freopen("data.txt","r",stdin);
    31     while(scanf("%d",&n),n){
    32         for(int i=1;i<=n;i++){
    33             scanf("%s",ch);
    34             sp=strchr(ch,'/');
    35             *sp='';
    36             sp++;
    37             strcpy(e[i].l,ch);
    38             sscanf(sp,"%d",&e[i].p);
    39             l[i]=r[i]=i;
    40             al[i]=ar[i]=0;
    41         }
    42         sort(e+1,e+n+1);
    43         e[0].p=e[n+1].p=INF;
    44         for(int i=1;i<=n;i++){
    45             while(e[i].p>=e[l[i]-1].p) l[i]=l[l[i]-1];
    46             al[l[i]]++;
    47         }
    48         for(int i=n;i>0;i--){
    49             while(e[i].p>=e[r[i]+1].p) r[i]=r[r[i]+1];
    50             ar[r[i]]++;
    51         }
    52         for(int i=1;i<=n;i++){
    53             put('(',al[i]);
    54             printf("%s/%d",e[i].l,e[i].p);
    55             put(')',ar[i]);
    56         }
    57         printf("
    ");
    58     }
    59     return 0;
    60 }
    /*单调栈*/
    
    
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <string>
     5 #include <cmath>
     6 #define MAX 60002
     7 #define ll long long
     8 using namespace std;
     9 
    10 typedef struct node{
    11     string l;
    12     ll p;
    13 
    14     bool operator <(const node& o)const{
    15         if(l<o.l) return 1;
    16         return 0;
    17     }
    18 }node;
    19 
    20 int n;
    21 node e[MAX];
    22 char ss[MAX];
    23 int dp[MAX][20];
    24 
    25 void solve(){
    26     int i,j,l,r;
    27     for(i=0;i<n;i++) dp[i][0]=i;
    28     for(j=1;(1<<j)<=n;j++){
    29         for(i=0;i+(1<<j)-1<n;i++){
    30             l=dp[i][j-1];   r=dp[i+(1<<(j-1))][j-1];
    31             if(e[l].p>e[r].p) dp[i][j]=l;
    32             else dp[i][j]=r;
    33         }
    34     }
    35 }
    36 
    37 int rmq(int a,int b){
    38     int k;
    39     k=log(b-a+1.0)/log(2.0);
    40     return (e[dp[a][k]].p>e[dp[b-(1<<k)+1][k]].p ? dp[a][k] : dp[b-(1<<k)+1][k]);
    41 }
    42 
    43 void print(int r,int L,int R){
    44     int ne;
    45     putchar('(');
    46     if(r-L>0){
    47         ne=rmq(L,r-1);
    48         print(ne,L,r-1);
    49     }
    50     for(unsigned int i=0;i<e[r].l.size();i++) putchar(e[r].l[i]);
    51     printf("/%lld",e[r].p);
    52     if(R-r>0){
    53         ne=rmq(r+1,R);
    54         print(ne,r+1,R);
    55     }
    56     putchar(')');
    57 }
    58 
    59 int main()
    60 {
    61     int li;
    62     char* st;
    63     //freopen("data.txt","r",stdin);
    64     while(scanf("%d",&n),n!=0){
    65         for(int i=0;i<n;i++){
    66             getchar();
    67             scanf("%s",ss);
    68             st=strchr(ss,'/');
    69             *st='';
    70             st++;
    71             e[i].l=string(ss);
    72             sscanf(st,"%lld",&e[i].p);
    73         }
    74         sort(e,e+n);
    75         solve();
    76         li=0;
    77         for(int i=1;i<n;i++){
    78             if(e[li].p<e[i].p) li=i;
    79         }
    80         print(li,0,n-1);
    81         printf("
    ");
    82     }
    83     return 0;
    84 }
    /*RMQ*/
  • 相关阅读:
    前中后序建立树或者直接历遍
    Leetcode:面试题 04.03. 特定深度节点链表
    按层数层序历遍
    Solidity函数修饰符
    无线传感网定位技术
    无线传感器网络概述,传感器网络结构
    Solidity高级用法
    智能合约交互
    内存
    CPU的态
  • 原文地址:https://www.cnblogs.com/sineatos/p/3905637.html
Copyright © 2011-2022 走看看