zoukankan      html  css  js  c++  java
  • 模拟111 题解

    A. 物理课

    发现每次反弹之后移动的距离是上一次的$d^2$倍。

    计算出第一次反弹之前移动的距离的答案$k$,

    总的答案即$sum limits_{i=0}^{inf}d^{2*i}*k$。

    发现这个东西就是一个等比数列求和。

    设答案为$s$,那么有$s=sum limits_{i=0}^{inf}d^{2*i}*k$

    $d^2s=sum limits_{i=1}^{inf}d^{2*i}*k$

    作差可得$(1-d^2)s=k$,即$s=frac{k}{1-d^2}$。

    这个东西似乎是生成函数中一个基本的式子。

    B. 数学课

    对于一个数$x$,如果它在集合$A$中,

    那么$2*x$一定在集合$B$,由此又可得$4*x$也在集合$A$中。

    所以只需要考虑每个奇数$x$在哪个集合中,决定了$x*2^k$在哪个集合中。

    很多的奇数是等价的,也就是说它们决定的元素个数相同。

    所以可以处理出每个等价类中有多少个元素,

    对于每个奇数元素,如果它出现在集合A中,那么会对集合A贡献a个元素。

    如果它出现在集合B中,那么会对集合A贡献b个元素。

    可以将每个奇数元素视作一个物品,然后可以$O(n^2)$暴力背包$dp$。

    然后发现本题存在一个特殊性质,即$abs(a-b)<=1$

    因为每个物品必须选其中之一,不妨直接选入较小的一个。

    如果二者贡献的答案相同即等价,可以直接给答案$*2$。

    因为差不超过$1$,可以直接用组合数算出选哪几个可以构成合法的方案。

    组合数的级别很大,但是模数提示可以用$lucas$定理,所以就解决了。

    C. 地理课

    维护动态联通块大小,可以离线。

    部分分提示使用并查集,所以可以想到一个类似线段树分治的过程。

    即将每条边加入它存在的区间的线段树对应节点中。

    之后不断递归线段树,开始递归时将数组记录并加入边,递归结束后将数组还原表示删边。

    当递归到叶子节点,即贡献统计完毕,可以直接输出答案。

    因为要进行还原操作,使用按秩合并并查集。

  • 相关阅读:
    Vue3使用vue3-video-player
    centos搭建phantomjs
    windows与Linux写入后门
    webService静态调用方法
    Web开发学习笔记(日更)
    docker修改容器绑定端口
    linux下~/.bashrc、/etc/profile、 $PATH环境变量 作用和修改
    docker for windows安装,修改images位置,修改镜像源,查看/var/lib/docker/containers
    hive修改表DDL
    python 高性能异步爬虫线程&线程池
  • 原文地址:https://www.cnblogs.com/skyh/p/11841036.html
Copyright © 2011-2022 走看看