zoukankan      html  css  js  c++  java
  • prove of supremum and infimum principle using Cauchy convergence criterium

    prove: suppose S is a non-empty set having upperbound number set
    by Archimedes property, for any positive number (alpha),exists a
    integer,it makes (lambda_{alpha}alpha) a S's upperbound, while
    (lambda) - a ,being not a upperbound to S.
    so,
    (lambda_{alpha}=k_{alpha}alpha) , a upperbound to S
    (lambda_{alpha}-alpha=(k_{alpha}-1)alpha) , not a upperbound to S
    set (alpha=frac{1}{n}),n=1,2,3....
    so, for each positive n ,exists a corresponding (lambda_{n}),
    it makes a upperbound to S, but not (lambda_{n}-frac{1}{n})
    they are as belows:
    (lambda_{alpha}=k_{alpha}alpha)
    (lambda_{alpha}-alpha=(k_{alpha}-1)alpha)
    so, there must be a (alpha'in S),with:
    (alpha'>lambda_{n}-frac{1}{n})
    so,get p(in {1,2,3,....})
    (lambda_{p}=k_{p}frac{1}{p})
    there must be a (alpha_{p})
    (alpha_{p}>lambda_{p}-frac{1}{p})
    choose q (in){1,2,3,...},we have:
    (lambda_{q}=k_{q}frac{1}{q}) is an upperbound .
    so (lambda_{q}>alpha_{p}>lambda_{p}-frac{1}{p})
    so (lambda_{p}-lambda_{q}<frac{1}{p})
    similarly,we get (lambda_{q}-lambda_{p}<frac{1}{q})

    so,we get |(lambda_{q}-lambda_{p}|<MAX{frac{1}{p},frac{1}{q}})
    (forall epsilon>0),we choose N>(frac{1}{epsilon})
    then we get (frac{1}{N}<epsilon)
    so when p,q >N,then
    (frac{1}{p},frac{1}{q}<frac{1}{N}<epsilon)
    so |(lambda_{p}-lambda_{q}|<MAX{frac{1}{p},frac{1}{q}}<epsilon)
    so , by Cauchy convergence criterium,({lambda_{n}}) converges
    set (lim_{n oinfty}lambda_{n}=lambda)
    $forall alpha in S,and forall lambda_{n},alpha leqslant lambda_{n}
    so ,by 数列极限的保不等式性, (forall alpha in S, alpha <lim_{n o infty}lambda_{n}=lambda)
    so, (lambda) is a upperbound to S.
    we need to prove :(forall epsilon>0),there exists a (alpha_{n}),with (alpha_{n}>lambda-epsilon)
    we know (forall frac{1}{n},)there is a (alpha_{n}>lambda_{n}-frac{1}{n})
    if (lambda_{n}-frac{1}{n}>lambda-epsilon)
    ie, (lambda-lambda_{n}+frac{1}{n}<epsilon)
    we need to have (frac{1}{n}<frac{epsilon}{2}),and (lambda-lambda_{n}<frac{epsilon}{2})
    ie: (n>frac{2}{epsilon}),(lambda-lambda_{n}<frac{epsilon}{2})
    cause (lim_{n oinfty}lambda_{n}=lambda),
    so, (exists)N_{0}(in N^+),when n>(N_{0}),(|lambda-lambda_{n}|<frac{epsilon}{2})
    ie,(-frac{epsilon}{2}<lambda-lambda_{n}<frac{epsilon}{2})
    so, if n>MAX{(N_{0},frac{2}{epsilon}})
    the theorem is proven
    likely to prove the infimum

  • 相关阅读:
    Unable to start ServletWebServerApplicationContext due to missing ServletWebServerFactory bean
    python 获取近几周日期
    vue node Failed at the iview-admin
    python 读取xls文件
    java正则解析ip
    JAVA操作Mongo 数组模糊查询
    Error connecting to the Service Control Manager: 拒绝访问 Mongodb问题-解决
    Voletile-多线程小例子
    新建VUE项目操作步骤(win7)
    mpvue开发小记
  • 原文地址:https://www.cnblogs.com/strongdady/p/13584535.html
Copyright © 2011-2022 走看看