zoukankan      html  css  js  c++  java
  • 01-复杂度2 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
    #include<cstdio>
    const int maxn = 100100;
    int a[maxn] = {0};
    int dp[maxn] = {0};
    int s[maxn] = {0};
    
    int main(){
        int n;
        scanf("%d",&n);
        bool flag = false;
        for(int i = 0; i < n; i++){
            scanf("%d",&a[i]);
            if(a[i] >= 0) flag = true;
        }
        if(!flag){
             printf("0 %d %d",a[0],a[n-1]);
             return 0;
        }
        //scanf("%d",&n);
        dp[0] = a[0];
        for(int i = 1; i < n; i++){
            if(dp[i-1] + a[i] >= a[i]){
                dp[i] = dp[i-1]+a[i];
                s[i] = s[i-1];
            }else{
                dp[i] = a[i];
                s[i] = i;
            }
        }
        int max = dp[0];
        int k = 0;
        for(int i = 1; i < n; i++){
            if(dp[i] > max){
                max = dp[i];
                k = i;
            }
        }
        printf("%d %d %d",max,a[s[k]],a[k]);
        return 0;
    }
  • 相关阅读:
    poj 3304 Segments 直线 线段求交
    poj 1077 Eight 八数码 A*算法
    UESTC 1447 Area 凸包+旋转卡壳 求最大四边形面积
    ACM计算几何题目推荐(第二期)
    poj 2398 Toy Storage 叉乘
    ACM计算几何题目推荐 (第一期)
    (转载)Telnet协议详解及使用C# 用Socket 编程来实现Telnet协议
    jquery 表情编辑器
    (读书笔记)Asp.net Mvc 与WebForm 混合开发
    (转载)精简说明C#最基本的Socket编程示例
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/10548671.html
Copyright © 2011-2022 走看看