zoukankan      html  css  js  c++  java
  • 01-复杂度2 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
    #include<cstdio>
    const int maxn = 100100;
    int a[maxn] = {0};
    int dp[maxn] = {0};
    int s[maxn] = {0};
    
    int main(){
        int n;
        scanf("%d",&n);
        bool flag = false;
        for(int i = 0; i < n; i++){
            scanf("%d",&a[i]);
            if(a[i] >= 0) flag = true;
        }
        if(!flag){
             printf("0 %d %d",a[0],a[n-1]);
             return 0;
        }
        //scanf("%d",&n);
        dp[0] = a[0];
        for(int i = 1; i < n; i++){
            if(dp[i-1] + a[i] >= a[i]){
                dp[i] = dp[i-1]+a[i];
                s[i] = s[i-1];
            }else{
                dp[i] = a[i];
                s[i] = i;
            }
        }
        int max = dp[0];
        int k = 0;
        for(int i = 1; i < n; i++){
            if(dp[i] > max){
                max = dp[i];
                k = i;
            }
        }
        printf("%d %d %d",max,a[s[k]],a[k]);
        return 0;
    }
  • 相关阅读:
    [POI2005]A Journey to Mars 单调队列
    滑动窗口 单调队列
    逆序对 模拟贪心
    迷宫 dfs爆搜
    [Usaco2019 Feb]The Great Revegetation
    [Usaco2007 Dec]挑剔的美食家
    [HNOI2004]宠物收养所
    bzoj2639 矩形计算
    [Ahoi2013]作业
    Gty的二逼妹子序列
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/10548671.html
Copyright © 2011-2022 走看看