zoukankan      html  css  js  c++  java
  • 01-复杂度2 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (≤). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
    #include<cstdio>
    const int maxn = 100100;
    int a[maxn] = {0};
    int dp[maxn] = {0};
    int s[maxn] = {0};
    
    int main(){
        int n;
        scanf("%d",&n);
        bool flag = false;
        for(int i = 0; i < n; i++){
            scanf("%d",&a[i]);
            if(a[i] >= 0) flag = true;
        }
        if(!flag){
             printf("0 %d %d",a[0],a[n-1]);
             return 0;
        }
        //scanf("%d",&n);
        dp[0] = a[0];
        for(int i = 1; i < n; i++){
            if(dp[i-1] + a[i] >= a[i]){
                dp[i] = dp[i-1]+a[i];
                s[i] = s[i-1];
            }else{
                dp[i] = a[i];
                s[i] = i;
            }
        }
        int max = dp[0];
        int k = 0;
        for(int i = 1; i < n; i++){
            if(dp[i] > max){
                max = dp[i];
                k = i;
            }
        }
        printf("%d %d %d",max,a[s[k]],a[k]);
        return 0;
    }
  • 相关阅读:
    ehcache memcache redis 三大缓存男高音
    tomcat启用压缩的方式
    Linux rpm 命令参数使用详解[介绍和应用]
    rpm常用命令及rpm参数介绍
    RPM 命令大全
    BZOJ2298: [HAOI2011]problem a(带权区间覆盖DP)
    BZOJ2037: [Sdoi2008]Sue的小球(区间DP)
    HDU3507 Print Article(斜率优化DP)
    线性代数学习笔记(几何版)
    HDU 2065 "红色病毒"问题(生成函数)
  • 原文地址:https://www.cnblogs.com/wanghao-boke/p/10548671.html
Copyright © 2011-2022 走看看