zoukankan      html  css  js  c++  java
  • [LC] 200. Number of Islands

    Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

    Example 1:

    Input:
    11110
    11010
    11000
    00000
    
    Output: 1
    

    Example 2:

    Input:
    11000
    11000
    00100
    00011
    
    Output: 3

    Solution 1:
    Time: O(M * N)
    class Solution {
        public int numIslands(char[][] grid) {
            if (grid == null || grid.length == 0 || grid[0].length == 0) {
                return 0;
            }
            int row = grid.length;
            int col = grid[0].length; 
            int res = 0;
            for (int i = 0; i < row; i++) {
                for (int j = 0; j < col; j++) {
                    if (grid[i][j] == '1') {
                        floodFill(grid, i, j);
                        res += 1;
                    }
                }
            }
            return res;
        }
        
        private void floodFill(char[][] grid, int i, int j) {
            // need to include grid[i][j] == 0 in base case
            if (i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == '0') {
                return;
            }
            grid[i][j] = '0';
            floodFill(grid, i - 1, j);
            floodFill(grid, i + 1, j);
            floodFill(grid, i, j - 1);
            floodFill(grid, i, j + 1);  
        }
    }

    solution 2:

    class Solution {
        private int row;
        private int col;
        public int numIslands(char[][] grid) {
            if (grid == null || grid.length == 0 || grid[0].length == 0) {
                return 0;
            }
            row = grid.length;
            col = grid[0].length; 
            int res = 0;
            for (int i = 0; i < row; i++) {
                for (int j = 0; j < col; j++) {
                    if (grid[i][j] == '1') {
                        floodFillBFS(grid, i, j);
                        res += 1;
                    }
                }
            }
            return res;
        }
        
        private void floodFillBFS(char[][] grid, int i, int j) {
            grid[i][j] = '0';
            Queue<Integer> queue = new LinkedList<>();
            queue.offer(i * col + j);
            while (!queue.isEmpty()) {
                int cur = queue.poll();
                int m = cur / col;
                int n = cur % col;
                if (m - 1 >= 0 && grid[m - 1][n] == '1') {
                    queue.offer((m - 1) * col + n);
                    grid[m - 1][n] = '0';
                }
                if (m + 1 < row && grid[m + 1][n] == '1') {
                    queue.offer((m + 1) * col + n);            
                    grid[m + 1][n] = '0';
                }
                if (n - 1 >= 0 && grid[m][n - 1] == '1') {
                    queue.offer(m * col + n - 1);
                    grid[m][n - 1] = '0';
                }
                if (n + 1 < col && grid[m][n + 1] == '1') {
                    queue.offer(m * col + n + 1);
                    grid[m][n + 1] = '0';
                }    
            }
        }
    }

    Solution 3:

    class Solution {
        private int row;
        private int col;
        public int numIslands(char[][] grid) {
            if (grid == null || grid.length == 0 || grid[0].length == 0) {
                return 0;
            }
            row = grid.length;
            col = grid[0].length; 
            int res = 0;
            for (int i = 0; i < row; i++) {
                for (int j = 0; j < col; j++) {
                    if (grid[i][j] == '1') {
                        floodFillBFSOpt(grid, i, j);
                        res += 1;
                    }
                }
            }
            return res;
        }
        
        private void floodFillBFSOpt(char[][] grid, int i, int j) {
            grid[i][j] = '0';
            int[][] directions = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
            Queue<Cell> queue = new LinkedList<>();
            queue.offer(new Cell(i, j));
            while (!queue.isEmpty()) {
                Cell cur = queue.poll();
                for (int[] direction: directions) {
                    int x = cur.getX() + direction[0];
                    int y = cur.getY() + direction[1];
                    if (x >= 0 && x < row && y >= 0 && y < col && grid[x][y] == '1') {
                        queue.offer(new Cell(x, y));
                        grid[x][y] = '0';
                    }
                }
            }
        }
    }
    
    class Cell {
        private int x;
        private int y;
        public Cell(int x, int y) {
            this.x = x;
            this.y = y;
        }
        public int getX() {
            return x;
        }
        
        public int getY() {
            return y;
        }
    }
  • 相关阅读:
    Java核心技术(初阶)知识点复习——[2]面向对象思想
    Java核心技术(初阶)知识点复习——[1]Java的类结构和main函数
    printStream与printWriter
    java反射的初步探索
    JDKJREJVM的关系
    树链剖分模板
    树状数组模板2
    树状数组模板1
    树状数组+欧拉降幂
    线段树模板二
  • 原文地址:https://www.cnblogs.com/xuanlu/p/11988532.html
Copyright © 2011-2022 走看看