zoukankan      html  css  js  c++  java
  • opencv 以及 c++ 函数

    1. 点旋转

        vector<Point> rot_pt(vector<Point> &v_pt,const cv::Mat &map_matrix)
        {
            //std::cout<<"map_matrix="<<map_matrix<<std::endl;
            float *map = (float *)map_matrix.ptr<float>();
    
            vector<Point> v_pt2src;
            for(int i=0;i<v_pt.size();i++)
            {
                //std::cout<<"src_pt="<<v_pt[i]<<std::endl;
                int x_t = v_pt[i].x;
                int y_t = v_pt[i].y;
                int x =  map[0]* x_t + map[1] * y_t + map[2];
                int y = map[3] * x_t + map[4] * y_t + map[5];
                v_pt2src.push_back(Point(x,y));
            }
            return v_pt2src;
        }
    

    2.用c++11计算耗时

    #include <chrono>
    #include <iostream>
    
    int main()
    {
        auto t0 = std::chrono::steady_clock::now();
    
        // Task to do
    
          std::cout << "consume time="<<std::chrono::duration_cast<std::chrono::milliseconds>
                            (std::chrono::steady_clock::now() - t0).count()<<"ms"<<std::endl;
        return 0;
    }
    

    上面是毫秒,也有秒,纳秒

    std::chrono::duration_cast<std::chrono::nanoseconds>  //纳秒
    std::chrono::duration_cast<std::chrono::microseconds> //微秒
    std::chrono::duration_cast<std::chrono::milliseconds> //毫秒
    std::chrono::duration_cast<std::chrono::seconds>      //秒
    

    3. c++ opencv直接减均值 除方差

    bool sub_mean( cv::Mat &img,cv::Mat &m_out)
    {
        img.convertTo(img, CV_32FC3);//这里注意一定要是CV_32FC3,要不然默认是uint,【0-255】,负数直接变为0
        const vector<float> m_v_mean = {104.0,117.0,123.0};
        if(3 != img.channels() || 3 != m_v_mean.size() || img.empty())
        {
            return false;
        }
        cv::Mat m_arr[3];
        cv::split(img,m_arr);
        for(int i=0;i<m_v_mean.size();i++)
        {
            m_arr[i] = m_arr[i] - m_v_mean[i];
        }
        merge(m_arr,3,m_out);
        return true;
    }
    

    其实opencv可以一句话搞定!!!!

    img.convertTo(img, CV_32FC3);
    Mat m_out_2 = img - cv::Scalar(104.0,117.0,123.0);
    

    opencv不支持直接除(除方差) Mat m_out_2 = img / cv::Scalar(104.0,117.0,123.0);
    下面代码是opencv 减均值除方差操作

        Mat img = imread("/data_4/everyday/0902/snake/88.png",IMREAD_UNCHANGED);
        Mat img2;
        img.convertTo(img2, CV_32F);
        img2 = img2 / 255.0;
        Mat m_out_2 = img2 - cv::Scalar(0.40789655,0.44719303,0.47026116);
        vector<float> v_std_ = {0.2886383,0.27408165,0.27809834};
    
        std::vector<cv::Mat> bgrChannels(3);
        cv::split(m_out_2, bgrChannels);
        for(int i=0;i<3;i++)
        {
            bgrChannels[i].convertTo(bgrChannels[i], CV_32FC1, 1.0 / v_std_[i]);
        }
        Mat m_out_3;
        cv::merge(bgrChannels, m_out_3);
    

    4. 去除颜色信息 彩色图转灰度图,灰度图转彩色图

    c++版本

     cv::Mat img = cv::imread(img_path);//三通道
     cvtColor(img, img, CV_BGR2GRAY);//单通道
     cvtColor(img, img, CV_GRAY2BGR);//三通道
    

    python 版本

            img = cv2.imread(image_path, cv2.IMREAD_COLOR).astype('float32')
            img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
            img=cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
    

    5. opencv imread函数的第二个参数

    Mat imread(const string& filename, int flags = 1);
    第一个参数filename是我们需要载入图片的路径名。至于第二个参数,表示的是加载的图像是什么类型,可以看到它自带的默认值为1。至于具体有多少种取值,各个取值代表什么类型,我网上找了好多资料都不尽相同。经过我在vs下亲自验证,总结一下几种参数值:
    CV_LOAD_IMAGE_UNCHANGED = -1(含<-1的整数)—— 在每个通道中,每个像素的位深为8 bit,通道数(颜色)保持不变;
    CV_LOAD_IMAGE_GRAYSCALE = 0 ——位深为8bit,通道数 = 1(灰度图);
    CV_LOAD_IMAGE_COLOR = 1(含其余>1整数)——位深 = ?(不确定),通道数 = 3(BGR图);
    CV_LOAD_IMAGE_ANYDEPTH = 2 —— 位深不变,通道数 = ?(在VS中测试为1,灰度图);
    CV_LOAD_IMAGE_ANYCOLOR = 4 —— 位深 = ?, 通道数不变。
    

    默认是1即CV_LOAD_IMAGE_COLOR,即不管什么,都以三通道彩色图读取,即使你图片是单通道的灰度图也整成三通道。要保持原图不变读取,需要加参数-1,即CV_LOAD_IMAGE_UNCHANGED = -1

    6.opencv 图片保存视频

     cv::VideoWriter writer("/data_2/everyday/0804/00.avi", CV_FOURCC('D','I','V','X'), 30.0, cv::Size(1125,589));
     writer<<img;
    

    注意,img的size需要一致!!!!! 和定义VideoWriter的时候需要一样

    opencv roi 贴图 img2.copyTo(img(rt));

    //img2是roi图, rt和roi大小需要一样!!!!

    int main()
    {
        Mat img = imread("/data_2/fengjing.jpeg");
        Mat img_src = img.clone();
        Mat img2 = imread("/data_2/dog.jpg");
        Rect rt = Rect(100,100,560,553);
        img2.copyTo(img(rt)); //img2是roi图, rt和roi大小需要一样!!!!
    
        namedWindow("src",0);
        imshow("src",img_src);
        namedWindow("roi",0);
        imshow("roi",img2);
        namedWindow("merge",0);
        imshow("merge",img);
        waitKey(0);
    }
    

    图片保持长宽比,缩放到固定尺寸

        int input_w = 512;
        int input_h = 512;
        float scale = cv::min(float(input_w)/img.cols,float(input_h)/img.rows);
        auto scaleSize = cv::Size(img.cols * scale,img.rows * scale);
    
        cv::Mat resized;
        cv::resize(img, resized,scaleSize,0,0);
    
        cv::Mat cropped = cv::Mat::zeros(input_h,input_w,CV_8UC3);
        cv::Rect rect((input_w- scaleSize.width)/2, (input_h-scaleSize.height)/2, scaleSize.width,scaleSize.height);
    
        resized.copyTo(cropped(rect));
    
  • 相关阅读:
    part of Hypertext Transfer Protocol HTTP/1.1
    Run Windows Service as a console program
    UNION 和UNION ALL 的区别
    分布式拒绝服务攻击(DDoS)原理及防范
    执行存储过程超时 SQL
    sql 小技巧 =》本周五和上周四的时间
    OPENXML with xmlns:dt
    Comparing the Timer Classes in the .NET Framework Class Library
    图片(地图)热点区域高亮显示研究
    用YSlow分析我们页面(转)
  • 原文地址:https://www.cnblogs.com/yanghailin/p/12067239.html
Copyright © 2011-2022 走看看