目录
1. 点旋转
vector<Point> rot_pt(vector<Point> &v_pt,const cv::Mat &map_matrix)
{
//std::cout<<"map_matrix="<<map_matrix<<std::endl;
float *map = (float *)map_matrix.ptr<float>();
vector<Point> v_pt2src;
for(int i=0;i<v_pt.size();i++)
{
//std::cout<<"src_pt="<<v_pt[i]<<std::endl;
int x_t = v_pt[i].x;
int y_t = v_pt[i].y;
int x = map[0]* x_t + map[1] * y_t + map[2];
int y = map[3] * x_t + map[4] * y_t + map[5];
v_pt2src.push_back(Point(x,y));
}
return v_pt2src;
}
2.用c++11计算耗时
#include <chrono>
#include <iostream>
int main()
{
auto t0 = std::chrono::steady_clock::now();
// Task to do
std::cout << "consume time="<<std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::steady_clock::now() - t0).count()<<"ms"<<std::endl;
return 0;
}
上面是毫秒,也有秒,纳秒
std::chrono::duration_cast<std::chrono::nanoseconds> //纳秒
std::chrono::duration_cast<std::chrono::microseconds> //微秒
std::chrono::duration_cast<std::chrono::milliseconds> //毫秒
std::chrono::duration_cast<std::chrono::seconds> //秒
3. c++ opencv直接减均值 除方差
bool sub_mean( cv::Mat &img,cv::Mat &m_out)
{
img.convertTo(img, CV_32FC3);//这里注意一定要是CV_32FC3,要不然默认是uint,【0-255】,负数直接变为0
const vector<float> m_v_mean = {104.0,117.0,123.0};
if(3 != img.channels() || 3 != m_v_mean.size() || img.empty())
{
return false;
}
cv::Mat m_arr[3];
cv::split(img,m_arr);
for(int i=0;i<m_v_mean.size();i++)
{
m_arr[i] = m_arr[i] - m_v_mean[i];
}
merge(m_arr,3,m_out);
return true;
}
其实opencv可以一句话搞定!!!!
img.convertTo(img, CV_32FC3);
Mat m_out_2 = img - cv::Scalar(104.0,117.0,123.0);
opencv不支持直接除(除方差) Mat m_out_2 = img / cv::Scalar(104.0,117.0,123.0);
下面代码是opencv 减均值除方差操作
Mat img = imread("/data_4/everyday/0902/snake/88.png",IMREAD_UNCHANGED);
Mat img2;
img.convertTo(img2, CV_32F);
img2 = img2 / 255.0;
Mat m_out_2 = img2 - cv::Scalar(0.40789655,0.44719303,0.47026116);
vector<float> v_std_ = {0.2886383,0.27408165,0.27809834};
std::vector<cv::Mat> bgrChannels(3);
cv::split(m_out_2, bgrChannels);
for(int i=0;i<3;i++)
{
bgrChannels[i].convertTo(bgrChannels[i], CV_32FC1, 1.0 / v_std_[i]);
}
Mat m_out_3;
cv::merge(bgrChannels, m_out_3);
4. 去除颜色信息 彩色图转灰度图,灰度图转彩色图
c++版本
cv::Mat img = cv::imread(img_path);//三通道
cvtColor(img, img, CV_BGR2GRAY);//单通道
cvtColor(img, img, CV_GRAY2BGR);//三通道
python 版本
img = cv2.imread(image_path, cv2.IMREAD_COLOR).astype('float32')
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img=cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
5. opencv imread函数的第二个参数
Mat imread(const string& filename, int flags = 1);
第一个参数filename是我们需要载入图片的路径名。至于第二个参数,表示的是加载的图像是什么类型,可以看到它自带的默认值为1。至于具体有多少种取值,各个取值代表什么类型,我网上找了好多资料都不尽相同。经过我在vs下亲自验证,总结一下几种参数值:
CV_LOAD_IMAGE_UNCHANGED = -1(含<-1的整数)—— 在每个通道中,每个像素的位深为8 bit,通道数(颜色)保持不变;
CV_LOAD_IMAGE_GRAYSCALE = 0 ——位深为8bit,通道数 = 1(灰度图);
CV_LOAD_IMAGE_COLOR = 1(含其余>1整数)——位深 = ?(不确定),通道数 = 3(BGR图);
CV_LOAD_IMAGE_ANYDEPTH = 2 —— 位深不变,通道数 = ?(在VS中测试为1,灰度图);
CV_LOAD_IMAGE_ANYCOLOR = 4 —— 位深 = ?, 通道数不变。
默认是1即CV_LOAD_IMAGE_COLOR,即不管什么,都以三通道彩色图读取,即使你图片是单通道的灰度图也整成三通道。要保持原图不变读取,需要加参数-1,即CV_LOAD_IMAGE_UNCHANGED = -1
6.opencv 图片保存视频
cv::VideoWriter writer("/data_2/everyday/0804/00.avi", CV_FOURCC('D','I','V','X'), 30.0, cv::Size(1125,589));
writer<<img;
注意,img的size需要一致!!!!! 和定义VideoWriter的时候需要一样
opencv roi 贴图 img2.copyTo(img(rt));
//img2是roi图, rt和roi大小需要一样!!!!
int main()
{
Mat img = imread("/data_2/fengjing.jpeg");
Mat img_src = img.clone();
Mat img2 = imread("/data_2/dog.jpg");
Rect rt = Rect(100,100,560,553);
img2.copyTo(img(rt)); //img2是roi图, rt和roi大小需要一样!!!!
namedWindow("src",0);
imshow("src",img_src);
namedWindow("roi",0);
imshow("roi",img2);
namedWindow("merge",0);
imshow("merge",img);
waitKey(0);
}
图片保持长宽比,缩放到固定尺寸
int input_w = 512;
int input_h = 512;
float scale = cv::min(float(input_w)/img.cols,float(input_h)/img.rows);
auto scaleSize = cv::Size(img.cols * scale,img.rows * scale);
cv::Mat resized;
cv::resize(img, resized,scaleSize,0,0);
cv::Mat cropped = cv::Mat::zeros(input_h,input_w,CV_8UC3);
cv::Rect rect((input_w- scaleSize.width)/2, (input_h-scaleSize.height)/2, scaleSize.width,scaleSize.height);
resized.copyTo(cropped(rect));