zoukankan      html  css  js  c++  java
  • 卷积神经网络_(1)卷积层和池化层学习

    卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC

    (1)卷积层:用它来进行特征提取,如下:

    输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filter得到了两个特征图;

    我们通常会使用多层卷积层来得到更深层次的特征图。如下:

    关于卷积的过程图解如下:

    输入图像和filter的对应位置元素相乘再求和,最后再加上b,得到特征图。如图中所示,filter w0的第一层深度和输入图像的蓝色方框中对应元素相乘再求和得到0,其他两个深度得到2,0,则有0+2+0+1=3即图中右边特征图的第一个元素3.,卷积过后输入图像的蓝色方框再滑动,stride=2,如下:

    如上图,完成卷积,得到一个3*3*1的特征图;在这里还要注意一点,即zero pad项,即为图像加上一个边界,边界元素均为0.(对原输入无影响)一般有

    F=3 => zero pad with 1

    F=5 => zero pad with 2

    F=7=> zero pad with 3,边界宽度是一个经验值,加上zero pad这一项是为了使输入图像和卷积后的特征图具有相同的维度,如:

    输入为5*5*3,filter为3*3*3,在zero pad 为1,则加上zero pad后的输入图像为7*7*3,则卷积后的特征图大小为5*5*1((7-3)/1+1),与输入图像一样;

    而关于特征图的大小计算方法具体如下:

     卷积层还有一个特性就是“权值共享”原则。如下图:

    如没有这个原则,则特征图由10个32*32*1的特征图组成,即每个特征图上有1024个神经元,每个神经元对应输入图像上一块5*5*3的区域,即一个神经元和输入图像的这块区域有75个连接,即75个权值参数,则共有75*1024*10=768000个权值参数,这是非常复杂的,因此卷积神经网络引入“权值”共享原则,即一个特征图上每个神经元对应的75个权值参数被每个神经元共享,这样则只需75*10=750个权值参数,而每个特征图的阈值也共享,即需要10个阈值,则总共需要750+10=760个参数。

    补充:

    (1)对于多通道图像做1*1卷积,其实就是将输入图像的每个通道乘以系数后加在一起,即相当于将原图中本来各个独立的通道“联通”在了一起;

     (2)权值共享时,只是在每一个filter上的每一个channel中是共享的;

    池化层:对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面进行特征压缩,提取主要特征,如下:

    池化操作一般有两种,一种是Avy Pooling,一种是max Pooling,如下:

    同样地采用一个2*2的filter,max pooling是在每一个区域中寻找最大值,这里的stride=2,最终在原特征图中提取主要特征得到右图。

    (Avy pooling现在不怎么用了(其实就是平均池化层),方法是对每一个2*2的区域元素求和,再除以4,得到主要特征),而一般的filter取2*2,最大取3*3,stride取2,压缩为原来的1/4.

    注意:这里的pooling操作是特征图缩小,有可能影响网络的准确度,因此可以通过增加特征图的深度来弥补(这里的深度变为原来的2倍)。

    全连接层:连接所有的特征,将输出值送给分类器(如softmax分类器)。

    总的一个结构大致如下:

    另外:CNN网络中前几层的卷积层参数量占比小,计算量占比大;而后面的全连接层正好相反,大部分CNN网络都具有这个特点。因此我们在进行计算加速优化时,重点放在卷积层;进行参数优化、权值裁剪时,重点放在全连接层。

  • 相关阅读:
    【第40套模拟题】【noip2011_mayan】解题报告【map】【数论】【dfs】
    【模拟题(63550802...)】解题报告【贪心】【拓扑排序】【找规律】【树相关】
    【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】
    IMemoryBufferReference and IMemoryBufferByteAccess
    SoftwareBitmap and BitmapEncoder in Windows.Graphics.Imaging Namespace
    Windows UPnP APIs
    编译Android技术总结
    Windows函数转发器
    Two Ways in Delphi to Get IP Address on Android
    Delphi Call getifaddrs and freeifaddrs on Android
  • 原文地址:https://www.cnblogs.com/zf-blog/p/6075286.html
Copyright © 2011-2022 走看看