zoukankan      html  css  js  c++  java
  • 图中最短路径的算法--dijiska算法C语言实现

      1 #include <stdio.h>
      2 #include <stdlib.h>
      3 
      4 #define ERROR_NO_MEM   -1   /*内存不足的错误码*/
      5 
      6 #define MAX_POINT_NUM   5  /*最大的点数*/
      7 #define MAX_EDGE_NUM  7    /*最多的边数*/
      8 
      9 #define MAX_VALUE  0xfffffff  /*最大路径长度*/
     10 
     11 /*表示每个结点的信息*/
     12 struct tagEdgeNode 
     13 {
     14     int value;             /*结点数值*/
     15     struct tagEdgeNode *next;  /*指向路径的下一个结点*/
     16 };
     17 
     18 /*存储路径的数组*/
     19 typedef struct tagEdgeNode *adjlist[MAX_POINT_NUM];
     20 
     21 
     22 /*存储图的邻接矩阵*/
     23 typedef int AdjMatrix[MAX_POINT_NUM ][MAX_POINT_NUM ];
     24 
     25 
     26 /*
     27 释放链表上的动态内存 
     28 */
     29 void freeNode(struct tagEdgeNode *list)
     30 {
     31         struct tagEdgeNode *p = NULL;
     32         struct tagEdgeNode *tmp = NULL;
     33         
     34         p = list;
     35         while(NULL != p)
     36         {
     37                 tmp = p->next;
     38                 
     39                 free(p);
     40                 
     41                 p = tmp;
     42         }
     43         
     44         return ;
     45 }
     46 
     47 /*
     48 显示图的邻接矩阵 
     49 */
     50 void showGraph(AdjMatrix GA)
     51 {
     52     int i;
     53     int j;
     54     
     55     for(i = 0; i < MAX_POINT_NUM; i++)
     56     {
     57         for(j = 0; j < MAX_POINT_NUM; j++)
     58         {
     59                 if(( MAX_VALUE != GA[i][j] ) && ( 0 != GA[i][j] ))
     60                 {
     61                         printf("GA[%d][%d] =%d 
    ", i, j, GA[i][j]);
     62                         }
     63             
     64         }
     65         
     66         printf("
    ");
     67     }
     68 
     69     return ;
     70 }
     71 
     72 
     73 
     74 /*
     75 修改路径结点 
     76 */
     77 int ChangePath(adjlist path, int m, int j)
     78 {
     79     struct tagEdgeNode *p = NULL;
     80     struct tagEdgeNode *q = NULL;
     81     struct tagEdgeNode *end = NULL;
     82     
     83     /*清除顶点j的当前最短路径*/
     84     freeNode(path[j]);
     85     path[j] = NULL;
     86 
     87     /*把到顶点m的最短路径复制到顶点j的最短路径上*/
     88     p = path[m];
     89     while(NULL != p)
     90     {
     91         q = malloc(sizeof(struct tagEdgeNode));
     92         if(NULL == q)
     93         {
     94                 /*申请内存失败,释放已有链表*/
     95                 freeNode(path[j]);
     96                 return ERROR_NO_MEM;
     97                 }
     98 
     99         q->value = p->value;
    100         if( NULL == path[j] )
    101         {
    102             path[j] = q;
    103         }
    104         else
    105         {
    106             end->next = q;
    107         }
    108 
    109         end = q;
    110         p = p->next;
    111     }
    112 
    113     /*把顶点j加入到path[j]单链表的最后,形成新的目前最短路径*/
    114     q = malloc(sizeof(struct tagEdgeNode));
    115     if(NULL == q)
    116     {
    117         /*申请内存失败,释放已有链表*/
    118         freeNode(path[j]);
    119         return ERROR_NO_MEM;
    120         }
    121         
    122     q->value = j;
    123     q->next = NULL;
    124     
    125     end->next = q;
    126 
    127     return 0;
    128 }
    129 
    130 
    131 
    132 /*
    133 查找出从节点i开始到其他所有节点的最短路径(dijkstra算法) 
    134 */
    135 int FindShortestPath(AdjMatrix GA, int dist[], adjlist path, int i)
    136 {
    137     int j, k,w,m;
    138     int newDistance;
    139     int minDistance;
    140     
    141     int Set[MAX_POINT_NUM];  /*存放已求得最短路径的节点*/
    142     struct tagEdgeNode *p1 = NULL;
    143     struct tagEdgeNode *p2 = NULL;
    144 
    145         /*初始化Set集合、路径结点集合*/
    146     for(j =0; j < MAX_POINT_NUM; j++)
    147     {
    148         if( j == i )
    149         {
    150             Set[j] = 1;
    151         }
    152         else
    153         {
    154             Set[j] = 0;
    155         }
    156 
    157         dist[j] = GA[i][j];
    158 
    159                 /*如果到相邻结点的距离不是无穷大,则记录该路径*/
    160         if(( dist[j] < MAX_VALUE ) && ( j != i))
    161         {
    162                 p1 = malloc(sizeof(struct tagEdgeNode));
    163                 p2 = malloc(sizeof(struct tagEdgeNode));
    164                 if(( NULL == p1) || ( NULL == p2 ))
    165                 {
    166                         if( NULL != p1 )  
    167                         {
    168                                 free(p1);
    169                                 }
    170                                 if( NULL != p2 )
    171                                 {
    172                                         free(p2);
    173                                 }
    174                                 
    175                                 return ERROR_NO_MEM;
    176                         }
    177         
    178             p1->value = i;
    179             p2->value = j;
    180             p2->next = NULL;
    181             p1->next = p2;
    182             path[j] = p1;
    183         }
    184         else
    185         {
    186             path[j] = NULL;
    187         }            
    188     }
    189 
    190     /*共计需要n-2次循环, 每次循环选择路径最短的作为起点*/
    191     for ( k = 1; k <= MAX_POINT_NUM-2; k++)
    192     {
    193         /*求出第k个终点m*/
    194         minDistance = MAX_VALUE;
    195         m = i;
    196 
    197                 /*寻找到下一个开始搜寻的节点:条件是不在集合中,而且距起始节点最近*/
    198         for(j = 0; j < MAX_POINT_NUM; j++)
    199         {
    200             if(( Set[j] == 0 ) && (dist[j] < minDistance))
    201             {
    202                 minDistance = dist[j];
    203                 m = j;
    204             }
    205         }
    206 
    207         /*若条件成立, 则把顶点m并入集合S中, 否则退出循环,因为剩余的顶点, 
    208           其最短路径长度均为MAX_VALUE,无需再计算*/
    209         if( m != i)
    210         {
    211             Set[m] = 1;
    212         }
    213         else
    214         {
    215             break;
    216         }
    217 
    218         /*从未排序节点中选择对应dist和path中的元素做必要修改*/
    219         for( j = 0; j < MAX_POINT_NUM; j++)
    220         {
    221                 newDistance = dist[m] + GA[m][j];
    222             if(( 0 == Set[j] ) && ( newDistance < dist[j] ))
    223             {
    224                 dist[j] = newDistance;
    225                 ChangePath(path, m, j);
    226             }
    227         }
    228     }
    229 
    230     /*显示图的最短距离和最短路径*/
    231     printf("next show shortest path as following: 
    ");
    232     for(i = 0; i < MAX_POINT_NUM; i++)
    233     {
    234         printf("min distance to [%d] = %d 
    ", i, dist[i]);
    235         printf("path:");
    236         
    237         p1 = path[i];
    238         while(NULL != p1)
    239         {
    240                 printf(" %d ", p1->value);
    241                 p1 = p1->next;
    242                 }
    243                 
    244                 printf("
    
    ");
    245     }
    246     
    247     /*释放所有的动态内存*/ 
    248     for(i = 0; i < MAX_POINT_NUM; i++)
    249     {
    250         freeNode(path[i]);
    251         }
    252     
    253     return 0;
    254 }
    255 
    256 
    257 /*
    258   创建图的邻接矩阵。
    259   创建成功时,返回0. 
    260   创建失败时,返回错误码
    261   */
    262 int createGraph(AdjMatrix GA)
    263 {
    264     int i;
    265     int j;
    266     int k;
    267     int weigt;
    268     
    269 
    270     /*初始化邻接数组*/
    271     for(i = 0; i < MAX_POINT_NUM; i++)
    272     {
    273         for(j = 0; j < MAX_POINT_NUM; j++)
    274         {
    275             if( i == j)
    276             {
    277                 GA[i][j] = 0;
    278             }
    279             else
    280             {
    281                 GA[i][j] = MAX_VALUE;
    282             }
    283         }
    284     }
    285 
    286     /*建立邻接数组*/
    287     printf("input number from 0 to 4 as edge point. and max 7 link between those points. weigt should less than 0xfffffff
    ");
    288     printf("input one edge, from i to j, weigh, format is: i j weigt 
    ");
    289     for(k = 1; k <= MAX_EDGE_NUM; k++ )
    290     {
    291         /*建立一条边。从i到j. 权值为w <i  j  w>*/
    292         
    293         scanf("%d %d %d", &i, &j, &weigt);
    294         
    295         /*判断参数合法性*/
    296         if(( i > 4 ) || ( j > 4) || (weigt >= MAX_VALUE))
    297         {
    298                 printf("invalid i or j or weigt value. i=%d j=%d weigt=%d 
    ", i, j, weigt);
    299                 continue;
    300                 }
    301 
    302         GA[i][j] = weigt;
    303     }
    304     
    305 /*  可以用下面这组作为测试数据,验证算法 
    306     GA[0][1] = 1;
    307     GA[0][2] = 2;
    308     GA[1][2] = 3;
    309     GA[1][3] = 1;
    310     GA[1][4] = 3;
    311     GA[3][4] = 1;
    312     GA[2][4] = 2;
    313 */    
    314 
    315     return 0;
    316 }
    317 
    318 
    319 
    320 
    321 int main()
    322 {
    323     int ret;
    324     AdjMatrix GA;
    325     adjlist path;
    326     int dist[MAX_POINT_NUM];
    327 
    328     ret = createGraph(GA);
    329     if( 0 != ret)
    330     {
    331         printf("error. fail to create Graph");
    332         return 1;
    333     }
    334 
    335     showGraph(GA);
    336 
    337     ret = FindShortestPath(GA, dist, path, 0);
    338     if( 0 != ret)
    339     {
    340         printf("error. can not find the short path from point 0 in Graph");
    341         return 1;
    342     }
    343 
    344     return 0;
    345 }
    View Code
  • 相关阅读:
    Asp.net 中 OnClientClick 与 OnClick 的区别
    WPF + RDLC + Tablix动态生成列 + 表头合并
    统计表用于查询效果太差的情况
    TeamView WaitforConnectFailed错误原因
    瞄到BindingGroup用法
    最讨厌工作时候百度的信息
    Lambda获取类属性的名字
    附加属性作用于多选控件,用于获取所有选中项
    文件夹图标错落解决方案
    WPF Line 的颜色过度动画
  • 原文地址:https://www.cnblogs.com/zhouhaibing/p/7668823.html
Copyright © 2011-2022 走看看