zoukankan      html  css  js  c++  java
  • Codeforces10D–LCIS(区间DP)

    题目大意

    给定两个序列,要求你求出最长公共上升子序列

    题解

    LIS和LCS的合体X@8}U9MLE}EBUE273)]9PGF,YY好久没YY出方程,看了网友的题解,主要是参考aikilis的,直接搬过来好了

    经典的动态规划优化。

    用opt[i][j]表示s[0..i-1]与t[0..j-1]的以t[j-1]结尾的最长上升公共子序列的长度,那么最后的答案是max{opt[n][j] | 1<=j<=m}。

    当s[i-1]!=t[j-1]时,由于必须以t[j-1]收尾,所以不可能选择s[i-1],故有:

    opt[i][j]=opt[i-1][j]。

    当s[i-1]=t[j-1]时,与LIS一样,我们有:

    opt[i][j]=1+max{opt[i-1][k] | k<j,t[k]<t[j]}。

    如果直接求解这个状态转移方程,时间复杂度是O(n^3),我们需要进行优化,由于主要的时间消耗出现在s[i]=t[j]的情况下,所以我们对这种情况的求解进行优化。

    我们按照i优先的顺序求解(外层循环为i),那么注意到在求解opt[i][j]时,主要的工作量是计算max{opt[i-1][k] | k<j,t[k]<t[j]},然而如果我们利用以前已经求解过的opt[][]的值,可以直接得到opt[i][j]=1+max{opt[i-1][k] | k<j,t[k]<t[j]}的值而不用枚举,假设在t[j]之前有一个t[p]满足t[p]=t[j] (p<j),那么我们在求解opt[i][p]的时候已经得到了max{opt[i-1][k] | k<p,t[k]<t[p]},所以在求解opt[i][j]时,对于k<p,我们不用再比较opt[i-1][k] |,他们的最大值就等于opt[i][p]-1,所以我们可以记录最大的p,然后在求解opt[i][j]时,只对大于p的k作比较,另一方面,如果对于t[p]与t[k]之间的t的元素,我们显然不需要考虑那些不小于t[j]的,又因为t[j]=s[i],所以实际上我们只需要取max{opt[i-1][k] | p<k<j,t[k]<s[i]}与opt[i][p]-1的最大值,鉴于此,我们得到如下的做法:

    在每次内层循环(求解j)前,维护一个mx变量,它维护max{opt[i-1][k] | k<j,t[k]<t[j]=s[i]}的值,然后循环j,如果遇到t[j]<s[i],则更新mx=max{mx,opt[i-1][j],当出现t[j]=s[i]时,有opt[i][j]=mx+1。

    这样时间复杂度降为O(n^2)。

    刚开始的时候记录路径用了一维的,CF上AC了,不过POJWA了,后面改用二维,顺便学习了CF上大神的代码,用pair记录路径,这东西真是好东西,哈哈,又学到一个新东西~~~不过POJ上RE了,发现是有个变量忘记初始化了破碎的心

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <utility>
    using namespace std;
    #define  MAXN 505
    int a[MAXN],b[MAXN];
    int dp[MAXN][MAXN],m,n;
    pair<int,int> pre[MAXN][MAXN];
    void dfs(int i,int j)
    {
        if(!i||!j) return;
        dfs(pre[i][j].first,pre[i][j].second);
        if(a[i]==b[j]) printf("%d ",b[j]);
    }
    int main()
    {   
        while(scanf("%d",&n)!=EOF)
        {                 
            for(int i=1;i<=n;i++)
                scanf("%d",&a[i]);
            scanf("%d",&m);
            for(int i=1;i<=m;i++)
                scanf("%d",&b[i]);
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=n;i++)
            {
                int p=0;
                for(int j=1;j<=m;j++)
                {  
                    if(a[i]>b[j]&&dp[i-1][j]>dp[i-1][p]) p=j;
                    if(a[i]!=b[j])dp[i][j]=dp[i-1][j],pre[i][j]=make_pair(i-1,j);
                    else
                        dp[i][j]=dp[i-1][p]+1,pre[i][j]=make_pair(i-1,p);
                }
            }
            int ans=0,index=0;
            for(int i=1;i<=m;i++)
                if(dp[n][i]>ans)
                    ans=dp[n][i],index=i;
            printf("%d
    ",ans);
            dfs(n,index);
            printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    二项式反演
    快速沃尔什变换
    springMVC的form标签
    springMVC的拦截器配置
    RESTful使用方法
    springMVC数据绑定
    使用spring框架自带的字符拦截器
    将idea中的项目上传至github
    springMVC的使用方式
    springMVC的概述
  • 原文地址:https://www.cnblogs.com/zjbztianya/p/3265062.html
Copyright © 2011-2022 走看看