zoukankan      html  css  js  c++  java
  • 轻院:2211: 小明的有趣回文数

    http://acm.zzuli.edu.cn/problem.php?id=2211点击打开链接

    题目描述

        小明非常喜欢回文数,他发现有一些回文数非常有趣,它们不仅是回文数,而且还是素数,于是小明把它们成为有趣字符串。现在他想知道任意两个整数之间的有趣回文数的个数,聪明的你能帮帮他吗?

    输入

    第一行输入一个整数T,代表实例的数量。(T < 10000)

    接下来T行,每行输入两个整数a,b。(0<= a <= b <= 10000000)

    输出

    输出有T行 , 每行输出一个整数,代表[a,b]间内的有趣回文数的个数。

    样例输入

    2
    2 5
    10 20

    样例输出

    3
    1

    如果一个个判断的话肯定会超时,数不是太多,先打表算出所有符合要求的数,最后判断。

    打表:

    #include<stdio.h>
    #include<math.h>
    #define N 10000000
    int a[N];
    int HW(int n)
    {
    	int len,i,s;
    	len=log10(n);
    	while(n)
    	{
    		s=pow(10,len);
    		if(n%10!=n/s)
    			return 0;
    		else{
    			n=n%s;
    			n/=10;
    			len-=2;
    		}
    	}
    	return 1;
    }
    int main()
    {
    	int i,j,sum=0;
    	a[0]=a[1]=1;
    	for(i=2;i<N/2;i++)
    	{
    		if(a[i]==0)
    		for(j=2*i;j<N;j+=i)
    		{
    			a[j]=1;
    		}	
    	}
    	for(i=2;i<N;i++)
    	{
    		if(a[i]==0)
    		{
    			if(HW(i))
    			{
    				printf("%d,",i);
    				sum++;
    				if(sum%10==0)
    				printf("
    ");
    			}
    			
    		}
    	}
    	printf("%d",sum);
    
    }

    AC代码:

    #include<stdio.h>
    int f[800]={2,3,5,7,11,101,131,151,181,191,
    313,353,373,383,727,757,787,797,919,929,
    10301,10501,10601,11311,11411,12421,12721,12821,13331,13831,
    13931,14341,14741,15451,15551,16061,16361,16561,16661,17471,
    17971,18181,18481,19391,19891,19991,30103,30203,30403,30703,
    30803,31013,31513,32323,32423,33533,34543,34843,35053,35153,
    35353,35753,36263,36563,37273,37573,38083,38183,38783,39293,
    70207,70507,70607,71317,71917,72227,72727,73037,73237,73637,
    74047,74747,75557,76367,76667,77377,77477,77977,78487,78787,
    78887,79397,79697,79997,90709,91019,93139,93239,93739,94049,
    94349,94649,94849,94949,95959,96269,96469,96769,97379,97579,
    97879,98389,98689,1003001,1008001,1022201,1028201,1035301,1043401,1055501,
    1062601,1065601,1074701,1082801,1085801,1092901,1093901,1114111,1117111,1120211,
    
    1123211,1126211,1129211,1134311,1145411,1150511,1153511,1160611,1163611,1175711,
    
    1177711,1178711,1180811,1183811,1186811,1190911,1193911,1196911,1201021,1208021,
    
    1212121,1215121,1218121,1221221,1235321,1242421,1243421,1245421,1250521,1253521,
    
    1257521,1262621,1268621,1273721,1276721,1278721,1280821,1281821,1286821,1287821,
    
    1300031,1303031,1311131,1317131,1327231,1328231,1333331,1335331,1338331,1343431,
    
    1360631,1362631,1363631,1371731,1374731,1390931,1407041,1409041,1411141,1412141,
    
    1422241,1437341,1444441,1447441,1452541,1456541,1461641,1463641,1464641,1469641,
    
    1486841,1489841,1490941,1496941,1508051,1513151,1520251,1532351,1535351,1542451,
    
    1548451,1550551,1551551,1556551,1557551,1565651,1572751,1579751,1580851,1583851,
    
    1589851,1594951,1597951,1598951,1600061,1609061,1611161,1616161,1628261,1630361,
    
    1633361,1640461,1643461,1646461,1654561,1657561,1658561,1660661,1670761,1684861,
    
    1685861,1688861,1695961,1703071,1707071,1712171,1714171,1730371,1734371,1737371,
    
    1748471,1755571,1761671,1764671,1777771,1793971,1802081,1805081,1820281,1823281,
    
    1824281,1826281,1829281,1831381,1832381,1842481,1851581,1853581,1856581,1865681,
    
    1876781,1878781,1879781,1880881,1881881,1883881,1884881,1895981,1903091,1908091,
    
    1909091,1917191,1924291,1930391,1936391,1941491,1951591,1952591,1957591,1958591,
    
    1963691,1968691,1969691,1970791,1976791,1981891,1982891,1984891,1987891,1988891,
    
    1993991,1995991,1998991,3001003,3002003,3007003,3016103,3026203,3064603,3065603,
    
    3072703,3073703,3075703,3083803,3089803,3091903,3095903,3103013,3106013,3127213,
    
    3135313,3140413,3155513,3158513,3160613,3166613,3181813,3187813,3193913,3196913,
    
    3198913,3211123,3212123,3218123,3222223,3223223,3228223,3233323,3236323,3241423,
    
    3245423,3252523,3256523,3258523,3260623,3267623,3272723,3283823,3285823,3286823,
    
    3288823,3291923,3293923,3304033,3305033,3307033,3310133,3315133,3319133,3321233,
    
    3329233,3331333,3337333,3343433,3353533,3362633,3364633,3365633,3368633,3380833,
    
    3391933,3392933,3400043,3411143,3417143,3424243,3425243,3427243,3439343,3441443,
    
    3443443,3444443,3447443,3449443,3452543,3460643,3466643,3470743,3479743,3485843,
    
    3487843,3503053,3515153,3517153,3528253,3541453,3553553,3558553,3563653,3569653,
    
    3586853,3589853,3590953,3591953,3594953,3601063,3607063,3618163,3621263,3627263,
    
    3635363,3643463,3646463,3670763,3673763,3680863,3689863,3698963,3708073,3709073,
    
    3716173,3717173,3721273,3722273,3728273,3732373,3743473,3746473,3762673,3763673,
    
    3765673,3768673,3769673,3773773,3774773,3781873,3784873,3792973,3793973,3799973,
    
    3804083,3806083,3812183,3814183,3826283,3829283,3836383,3842483,3853583,3858583,
    
    3863683,3864683,3867683,3869683,3871783,3878783,3893983,3899983,3913193,3916193,
    
    3918193,3924293,3927293,3931393,3938393,3942493,3946493,3948493,3964693,3970793,
    
    3983893,3991993,3994993,3997993,3998993,7014107,7035307,7036307,7041407,7046407,
    
    7057507,7065607,7069607,7073707,7079707,7082807,7084807,7087807,7093907,7096907,
    
    7100017,7114117,7115117,7118117,7129217,7134317,7136317,7141417,7145417,7155517,
    
    7156517,7158517,7159517,7177717,7190917,7194917,7215127,7226227,7246427,7249427,
    
    7250527,7256527,7257527,7261627,7267627,7276727,7278727,7291927,7300037,7302037,
    
    7310137,7314137,7324237,7327237,7347437,7352537,7354537,7362637,7365637,7381837,
    
    7388837,7392937,7401047,7403047,7409047,7415147,7434347,7436347,7439347,7452547,
    
    7461647,7466647,7472747,7475747,7485847,7486847,7489847,7493947,7507057,7508057,
    
    7518157,7519157,7521257,7527257,7540457,7562657,7564657,7576757,7586857,7592957,
    
    7594957,7600067,7611167,7619167,7622267,7630367,7632367,7644467,7654567,7662667,
    
    7665667,7666667,7668667,7669667,7674767,7681867,7690967,7693967,7696967,7715177,
    
    7718177,7722277,7729277,7733377,7742477,7747477,7750577,7758577,7764677,7772777,
    
    7774777,7778777,7782877,7783877,7791977,7794977,7807087,7819187,7820287,7821287,
    
    7831387,7832387,7838387,7843487,7850587,7856587,7865687,7867687,7868687,7873787,
    
    7884887,7891987,7897987,7913197,7916197,7930397,7933397,7935397,7938397,7941497,
    
    7943497,7949497,7957597,7958597,7960697,7977797,7984897,7985897,7987897,7996997,
    
    9002009,9015109,9024209,9037309,9042409,9043409,9045409,9046409,9049409,9067609,
    
    9073709,9076709,9078709,9091909,9095909,9103019,9109019,9110119,9127219,9128219,
    
    9136319,9149419,9169619,9173719,9174719,9179719,9185819,9196919,9199919,9200029,
    
    9209029,9212129,9217129,9222229,9223229,9230329,9231329,9255529,9269629,9271729,
    
    9277729,9280829,9286829,9289829,9318139,9320239,9324239,9329239,9332339,9338339,
    
    9351539,9357539,9375739,9384839,9397939,9400049,9414149,9419149,9433349,9439349,
    
    9440449,9446449,9451549,9470749,9477749,9492949,9493949,9495949,9504059,9514159,
    
    9526259,9529259,9547459,9556559,9558559,9561659,9577759,9583859,9585859,9586859,
    
    9601069,9602069,9604069,9610169,9620269,9624269,9626269,9632369,9634369,9645469,
    
    9650569,9657569,9670769,9686869,9700079,9709079,9711179,9714179,9724279,9727279,
    
    9732379,9733379,9743479,9749479,9752579,9754579,9758579,9762679,9770779,9776779,
    
    9779779,9781879,9782879,9787879,9788879,9795979,9801089,9807089,9809089,9817189,
    
    9818189,9820289,9822289,9836389,9837389,9845489,9852589,9871789,9888889,9889889,
    
    9896989,9902099,9907099,9908099,9916199,9918199,9919199,9921299,9923299,9926299,
    
    9927299,9931399,9932399,9935399,9938399,9957599,9965699,9978799,9980899,9981899,
    
    9989899
    };
    int main()
    {
    	int t,a,b,i,ans;
    	scanf("%d",&t);
    	while(t--)
    	{
    		ans=0;
    		scanf("%d%d",&a,&b);
    		for(i=0;i<781;i++)
    		{
    			if(f[i]>=a&&f[i]<=b)
    				ans++;
    			if(f[i]>b)
    				break;
    		}
    		printf("%d
    ",ans);
    	}
    	return 0;
    }


  • 相关阅读:
    OpenCV--图像特征(harris角点检测)
    pycharm处理命令行参数
    OpenCV--文档扫描OCR识别
    OpenCV--信用卡数字识别
    OpenCV--傅里叶变换
    OpenCV--直方图
    OpenCV--模板匹配
    OpenCV--图像轮廓
    OpenCV--图像金字塔
    51Nod-1288 汽油补给 ST表 贪心 模拟
  • 原文地址:https://www.cnblogs.com/zyq1758043090/p/10003055.html
Copyright © 2011-2022 走看看