zoukankan      html  css  js  c++  java
  • [Swust OJ 1132]-Coin-collecting by robot

     
     
     
    Time limit(ms): 1000    Memory limit(kb): 65535
    Several coins are placed in cells of an n×m board. A robot, located in the upper left cell of the board, needs to collect as many of the coins as possible and bring them to the bottom right cell. On each step, the robot can move either one cell to the right or one cell down from its current location. 
    Description
    The fist line is n,m, which 1< = n,m <= 1000. 
    Then, have n row and m col, which has a coin in cell, the cell number is 1, otherwise is 0.
    Input
    The max number Coin-collecting by robot. 
    Output
    1
    2
    3
    4
    5
    6
    7
    5 6
    0 0 0 0 1 0
    0 1 0 1 0 0
    0 0 0 1 0 1
    0 0 1 0 0 1
    1 0 0 0 1 0
     
    Sample Input
    1
    2
    5
     
    Sample Output
    Hint
    algorithm text book
     
    题目大意:就是给出一个方阵nXm,每个格子1代表有硬币,0代表没有,问从左上角,到右下角(每次只能向下和向右移动)最多能收集多少硬币
     
    思路其实也挺简单的就是一个从终点到起点的反向dp,每次只能每次只能向下和向右移动(注意dp是反向进行的)
    于是得到了一个dp方程dp[i][j] += max(dp[i + 1][j] , dp[i][j + 1] )  注:这里为了降低空间复杂度直接用dp数据存贮的矩阵
     
    代码如下
     1 #include <stdio.h>
     2 int rows, dp[1001][1001];
     3 int main()
     4 {
     5     int i, j, n, m;
     6     scanf("%d%d", &n, &m);
     7     for (i = 0; i < n; i++)
     8     for (j = 0; j < m; j++)
     9         scanf("%d", &dp[i][j]);
    10     for (i = n - 1; i >= 0; i--)
    11     for (j = m - 1; j >= 0; j--)
    12         dp[i][j] += dp[i + 1][j] > dp[i][j + 1] ? dp[i + 1][j] : dp[i][j + 1];
    13     printf("%d
    ", dp[0][0]);
    14     return 0;
    15 }
    View Code

    其实最开始并没有想到dp(还是题做的少,没这个概念),直接两个方位的bfs+优先队列

    感觉应该是对的,为啥就是wa 呢?贴出代码,求大神指教

     1 #include <iostream>
     2 #include <queue>
     3 #include <algorithm>
     4 using namespace std;
     5 int map[1001][1001], vis[1001][1001], dir[][2] = { 1, 0, 0, 1 };
     6 int n, m;
     7 struct node{
     8     int x, y, cur;
     9     friend bool operator<(node x, node y){
    10         return x.cur < y.cur;
    11     }
    12 };
    13 int bfs(){
    14     priority_queue<node>Q;
    15     struct node now, next;
    16     now.x = now.y = 1, now.cur = map[1][1];
    17     vis[1][1] = 1;
    18     Q.push(now);
    19     while (!Q.empty()){
    20         now = Q.top();
    21         Q.pop();
    22         if (now.x == n&&now.y == m)
    23             return now.cur;
    24         for (int i = 0; i < 2; i++){
    25             next.x = now.x + dir[i][0];
    26             next.y = now.y + dir[i][1];
    27             if (next.x >= 1 && next.x <= n && next.y >= 1 && next.y <= m &&!vis[next.x][next.y]){
    28                 next.cur = now.cur + map[next.x][next.y];
    29                 vis[next.x][next.y] = 1;
    30                 Q.push(next);
    31             }
    32         }
    33     }
    34 }
    35 int main(){
    36     cin >> n >> m;
    37     for (int i = 1; i <= n; i++)
    38     for (int j = 1; j <= m; j++)
    39         cin >> map[i][j];
    40     cout << bfs() << "
    ";
    41     return 0;
    42 }
    View Code
  • 相关阅读:
    linux oracle命令行窗口命令上下翻阅
    oracle 转移表空间
    perl字符集处理
    Perl解析JSON数据精解
    处理外壳PROC
    FileIsExe
    写壳前的设计
    SEH结构化异常处理03
    SEH结构化异常处理02
    博客首记
  • 原文地址:https://www.cnblogs.com/zyxStar/p/4541030.html
Copyright © 2011-2022 走看看