zoukankan      html  css  js  c++  java
  • CCS

    Demodulation of AM Signals

    Demodulation is the process of extracting the message signal from the modulated signal.
    The demodulation process depends on the type of modulation employed. For
    DSB-AM and SSB-AM, the demodulation method is coherent demodulation, which
    requires the existence of a signal with the same frequency and phase of the carrier at
    the receiver. For conventional AM, envelope detectors are used for demodulation. In
    this case precise knowledge of the frequency and the phase of the carrier at the receiver

    is not crucial, so the demodulation process is much easier. Coherent demodulation for
    DSB-AM and SSB-AM consists of multiplying (mixing) the modulated signal by a sinusoidal
    with the same frequency and phase of the carrier and then passing the product
    through a lowpass filter. The oscillator that generates the required sinusoidal at the
    receiver is called the local oscillator.

    Matlab Coding

     

     

     1 % MATLAB script for Illustrative Problem 3.5.

     2 % Demonstration script for DSB-AM demodulation. The message signal
     3 % is +1 for 0 < t < t0/3, -2 for t0/3 < t < 2t0/3, and zero otherwise.
     4 echo on
     5 t0=.15;                                 % signal duration
     6 ts=1/1500;                              % sampling interval
     7 fc=250;                                 % carrier frequency
     8 fs=1/ts;                                % sampling frequency
     9 t=[0:ts:t0];                            % time vector
    10 df=0.3;                                 % desired frequency resolution
    11 % message signal
    12 m=[ones(1,t0/(3*ts)),-2*ones(1,t0/(3*ts)),zeros(1,t0/(3*ts)+1)];
    13 c=cos(2*pi*fc.*t);                      % carrier signal
    14 u=m.*c;                                 % modulated signal
    15 y=u.*c;                             % mixing
    16 [M,m,df1]=fftseq(m,ts,df);              % Fourier transform
    17 M=M/fs;                                 % scaling
    18 [U,u,df1]=fftseq(u,ts,df);              % Fourier transform
    19 U=U/fs;                                 % scaling
    20 [Y,y,df1]=fftseq(y,ts,df);              % Fourier transform
    21 Y=Y/fs;                                 % scaling
    22 f_cutoff=150;                           % cutoff freq. of the filter
    23 n_cutoff=floor(150/df1);                % Design the filter.
    24 f=[0:df1:df1*(length(y)-1)]-fs/2;
    25 H=zeros(size(f));
    26 H(1:n_cutoff)=2*ones(1,n_cutoff);
    27 H(length(f)-n_cutoff+1:length(f))=2*ones(1,n_cutoff);
    28 DEM=H.*Y;                           % spectrum of the filter output
    29 dem=real(ifft(DEM))*fs;             % filter output
    30 pause % Press a key to see the effect of mixing.
    31 clf
    32 subplot(3,1,1)
    33 plot(f,fftshift(abs(M)))
    34 title('Spectrum of the Message Signal')
    35 xlabel('Frequency')
    36 subplot(3,1,2)
    37 plot(f,fftshift(abs(U)))
    38 title('Spectrum of the Modulated Signal')
    39 xlabel('Frequency')
    40 subplot(3,1,3)
    41 plot(f,fftshift(abs(Y)))
    42 title('Spectrum of the Mixer Output')
    43 xlabel('Frequency')
    44 pause % Press a key to see the effect of filtering on the mixer output.
    45 clf
    46 subplot(3,1,1)
    47 plot(f,fftshift(abs(Y)))
    48 title('Spectrum of the Mixer Output')
    49 xlabel('Frequency')
    50 subplot(3,1,2)
    51 plot(f,fftshift(abs(H)))
    52 title('Lowpass Filter Characteristics')
    53 xlabel('Frequency')
    54 subplot(3,1,3)
    55 plot(f,fftshift(abs(DEM)))
    56 title('Spectrum of the Demodulator output')
    57 xlabel('Frequency')
    58 pause % Press a key to compare the spectra of the message and the received signal.
    59 clf
    60 subplot(2,1,1)
    61 plot(f,fftshift(abs(M)))
    62 title('Spectrum of the Message Signal')
    63 xlabel('Frequency')
    64 subplot(2,1,2)
    65 plot(f,fftshift(abs(DEM)))
    66 title('Spectrum of the Demodulator Output')
    67 xlabel('Frequency')
    68 pause % Press a key to see the message and the demodulator output signals.
    69 subplot(2,1,1)
    70 plot(t,m(1:length(t)))
    71 title('The Message Signal')
    72 xlabel('Time')
    73 subplot(2,1,2)
    74 plot(t,dem(1:length(t)))
    75 title('The Demodulator Output')
    76 xlabel('Time')


    The effect of mixing

    The effect of filtering on the mixer output

    Compare the spectra of the message and the received signal

    The message and the demodulator output signals

    Reference,

      1. <<Contemporary Communication System using MATLAB>> - John G. Proakis

  • 相关阅读:
    Difference between Nested & Correlated Subqueries
    Oracle Btree、位图、全文索引三大索引性能比较及优缺点汇总(转载)
    subquery unnesting、Subquery unnesting and View Merge
    MySQL中如何定义外键[转]
    索引1
    创建索引和索引类型
    UpdatePanel的用法详解
    索引2
    [HTTP]GET 和POST的区别
    [转]解决silverlight引用中文字体的问题
  • 原文地址:https://www.cnblogs.com/zzyzz/p/13779559.html
Copyright © 2011-2022 走看看