zoukankan      html  css  js  c++  java
  • 中北大学ACM 5/12 T6 CSY的幸福

    题面:

    给出一个整数N,求有4^N个因数的最小整数,结果对998244353取余,找到这个数字就能让CSY获得幸福。(N<=100000)



    (原题并不是CSY)去打ACM比赛,6道水题,2道蓝题,2道紫题,这道题大概在紫题水平?(我太菜了)

    平常我AKM压得贼(bu)稳【雾】,考试翻车加爆炸只打出来4道(丢人)

    看一眼题,第一个思路是质因数分解,因子个数即为每个质数的指数+1。

    首先把尽可能多的质数塞进一个小根堆里,

    4^N可以化为2^2N,递推做法,每次为了让N走一位,把堆顶取出,让答案乘以这个数,

    然后把取出的数乘以他本身塞回小根堆里.

    这样做的原因是,设ans=p1^c1 + p2^c2 + p3^c3...pn^cn;

    2^2N = (c1+1)(c2+1)(c3+1).....(cn+1)

    因为左边的2^2N我们大概可以猜到右边是(1+1)(3+1)(7+1)(15+1)之类的形式

    2^1 =(1+1) 所以我们选最小质因子的2

    2^2=(1+1)(1+1)=(3+1) (3+1)意味着乘以2^2,(1+1)(1+1)意味着乘以3, 3更小所以选3.

    2^3= (1+1)(1+1)(1+1) = (3+1)(1+1) 依序是乘以5或者乘以2^2,后者更小所以是(1+1)(3+1)

    模拟就模拟到这

    上面的那个堆存的就是为了让n走一位可以乘以哪些数,乘完了往回塞乘以它本身的本质是让存进去的数的指数为2的次方

    (1+1)变成(3+1)乘以的就是2^2,(3+1)变成(7+1)乘以的是2^4

    正确性得证。

    维护优先队列的时复为N logN,复杂度正确。

    考试的时候脑子一抽质数筛只筛到200000,前面的质数指数过大爆掉LONGLONG,到死没有发现BUG。

    (结论就是CSY无法获得幸福)

    代码:

    #include<bits/stdc++.h>
    #define ll long long
    #define p 998244353
    
    using namespace std ;
    
    long long pri[500010],psz,tag[500010],n;
    void prime(){
        for(int i=2;i<=500000;i++) { //报血海深仇 
            if(!tag[i]) {
                pri[++psz]=i;
                tag[i]=i;
            }
            for(int j=1;j<=psz;j++) {
                if(pri[j] > tag[i] || pri[j] > n/i) break;
                tag[i * pri[j]] = pri[j];
            }
        } 
    }
    
    priority_queue<long long> q;//我忘记小根堆怎么写了,存个负数水一下 = = 
    
    int main(){
        cin>>n;
        n*=2;
        prime();
        for(int i=1;i<=psz;i++){
            q.push(-pri[i]);
        }
        long long ans=1;
        for(int i=1;i<=n;i++){
            long long now=q.top();
            now*=-1;
            q.pop();
            ans*=now;
            ans%=p;
            q.push(-(now*now));
        }
        cout<<ans<<endl;
        return 0;
    }

    TAG:SIN_XIII ⑨

     

  • 相关阅读:
    [速记]关于指针,引用和递归和解递归——C++
    查找(二)——基于二叉排序树的查找
    查找总结(一)-----简单查找和折半查找
    jdk代理和cglib代理
    IOC和AOP使用扩展 多种方式实现依赖注入
    InputStream和Reader
    Spring IoC
    Spring AOP(aspect oriented programming) 转载
    数据校验与国际化
    Struts2 之 实现文件上传(多文件)和下载
  • 原文地址:https://www.cnblogs.com/SINXIII/p/10857494.html
Copyright © 2011-2022 走看看