zoukankan      html  css  js  c++  java
  • 121. 122. 123. 188. Best Time to Buy and Sell Stock *HARD* 309. Best Time to Buy and Sell Stock with Cooldown -- 买卖股票

    121.

    Say you have an array for which the ith element is the price of a given stock on day i.

    If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            int n = prices.size();
            if(n < 1)
                return 0;
            int mini = prices[0], ans = 0, i;
            for(i = 1; i < n; i++)
            {
                if(prices[i]-mini > ans)
                    ans = prices[i]-mini;
                if(prices[i] < mini)
                    mini = prices[i];
            }
            return ans;
        }
    };

    122.

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            int n = prices.size();
            if(n < 1)
                return 0;
            int mini = prices[0], maxi = prices[0], ans = 0, i;
            for(i = 1; i < n; i++)
            {
                if(prices[i] > maxi)
                    maxi = prices[i];
                else if(prices[i] < maxi)
                {
                    ans += maxi - mini;
                    maxi = mini = prices[i];
                }
            }
            ans += maxi - mini;
            return ans;
        }
    };

    123.

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            int n = prices.size();
            if(n < 1)
                return 0;
            vector<int> forward(n, 0), backward(n, 0);
            int mini, maxi, ans, i;
            forward[0] = 0;
            mini = prices[0];
            for(i = 1; i < n; i++)
            {
                forward[i] = max(forward[i-1], prices[i] - mini);
                if(prices[i] < mini)
                    mini = prices[i];
            }
            backward[n-1] = 0;
            maxi = prices[n-1];
            for(i = n-2; i >= 0; i--)
            {
                backward[i] = max(backward[i+1], maxi - prices[i]);
                if(prices[i] > maxi)
                    maxi = prices[i];
            }
            ans = 0;
            for(i = 0; i < n; i++)
            {
                ans = max(ans, forward[i] + backward[i]);
            }
            return ans;
        }
    };

    188.

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most k transactions.

    Note:
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    class Solution {
    public:
        int maxProfit(int k, vector<int>& prices) {
            int n = prices.size(), i, j;
            if(n < 1)
                return 0;
            if(k >= (n>>1))
            {
                int ans = 0;
                for(i = 0; i < n-1; i++)
                {
                    if(prices[i+1]-prices[i] > 0)
                        ans += prices[i+1]-prices[i];
                }
                return ans;
            }
            vector<int> buy(k+1, INT_MIN), sell(k+1, 0);
            for(i = 0; i < n; i++)
            {
                for(j = 1; j <= k; j++)
                {
                    buy[j] = max(buy[j], sell[j-1] - prices[i]);
                    sell[j] = max(sell[j], buy[j] + prices[i]);
                }
            }
            return sell[k];
        }
    };

    buy[i]表示买i个最多剩多少钱。sell[i]表示卖i个最多有多少钱。

    buy[j] = max(buy[j], sell[j-1] - prices[i]);  //看买prices[i]是否有原来划算
    class Solution {
    public:
        int maxProfit(int k, vector<int>& prices) {
            int n = prices.size(), i, j;
            if(n < 1)
                return 0;
            if(k >= (n>>1))
            {
                int ans = 0;
                for(i = 0; i < n-1; i++)
                {
                    if(prices[i+1]-prices[i] > 0)
                        ans += prices[i+1]-prices[i];
                }
                return ans;
            }
            vector<vector<int>> dp(n, vector<int>(k+1, 0)); //dp[i][j]表示到第i天卖j个最多赚多少钱
            for(i = 1; i <= k; i++)
            {
                int buy = -prices[0];
                for(j = 0; j < n; j++)
                {
                    dp[j][i] = max(j > 0 ? dp[j-1][i] : 0, buy + prices[j]);
                    buy = max(buy, dp[j][i-1] - prices[j]);
                }
            }
            return dp[n-1][k];
        }
    };

    和上面一个算法思路一样。

    309.

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

    • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
    • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

    Example:

    prices = [1, 2, 3, 0, 2]
    maxProfit = 3
    transactions = [buy, sell, cooldown, buy, sell]
    
    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            int n = prices.size();
            if(n <= 1)
                return 0;
            vector<int> sell(n+1, 0);
            int buy = -prices[0], i;
            for(i = 2; i <= n; i++)
            {
                sell[i] = max(sell[i-1], buy + prices[i-1]);
                buy = max(buy, sell[i-2] - prices[i-1]);
            }
            return sell[n];
        }
    };

    sell[i-2]表示cooldown[i-1]。

  • 相关阅读:
    HDU Problem 1811 Rank of Tetris【拓扑排序+并查集】
    POJ Problem 2367 Genealogical tree【拓扑排序】
    HDU Problem 2647 Reward【拓扑排序】
    HDU Problem 1285 确定比赛名次【拓扑排序】
    HDU Problem HDU Today 【最短路】
    HDU Problem 3665 Seaside【最短路】
    HDU Problem 一个人的旅行 【最短路dijkstra】
    HDU Problem 1596 find the safest road【最短路dijkstra】
    Beyond Compare文本合并进行内容替换要注意什么
    用这些工具都可以比较代码的差异
  • 原文地址:https://www.cnblogs.com/argenbarbie/p/5459311.html
Copyright © 2011-2022 走看看