1 import tushare 2 import time 3 import os 4 5 while 1: 6 df=tushare.get_realtime_quotes('600536') 7 print df['price'] 8 if df['price'].agg('max') > "27.50": 9 os.popen('bash ttt.sh') 10 time.sleep(2)
1 url="https://hooks.slack.com/services/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" 2 curdate="$(date "+%Y_%m_%d %H:%M:%S")" 3 #curl -v POST -H 'Content-type: application/json' -d '{ 4 curl POST -H 'Content-type: application/json' -d '{ 5 "response_type": "ephemeral", 6 "channel": "#demo", 7 "text": "Stock", 8 "username": "Bug News", 9 "icon_emoji": "", 10 "attachments": [{ 11 "color": "#a6364f", 12 "title": "CI crashs.", 13 "title_link": "https://gitlab.moonx.cn/Developers/apollo/pipelines", 14 "text": "'"${curdate}"'", 15 "fields": [{ 16 "title": "xxx", 17 }] 18 }] 19 }' $url
上述两脚本能实现实时监控某只stock,并预警通知slack。
https://github.com/waditu/tushare
pip install xxx -i http://pypi.douban.com/simple/
sudo pip install --upgrade tushare # python package upgrade
import tushare import time import os while 1: #df=tushare.get_realtime_quotes('002571') #df=tushare.get_realtime_quotes('603032') #print df['a5_p'][0],':',df['a5_v'][0] #print df['a4_p'][0],':',df['a4_v'][0] #print df['a3_p'][0],':',df['a3_v'][0] #print df['a2_p'][0],':',df['a2_v'][0] #print df['a1_p'][0],':',df['a1_v'][0] #print "------------" #print df['b1_p'][0],':',df['b1_v'][0] #print df['b2_p'][0],':',df['b2_v'][0] #print df['b3_p'][0],':',df['b3_v'][0] #print df['b4_p'][0],':',df['b4_v'][0] #print df['b5_p'][0],':',df['b5_v'][0] #print "------------" #print "------------" #df=tushare.get_realtime_quotes('603711') df=tushare.get_realtime_quotes('000725') #df=tushare.get_realtime_quotes('002230') print df['a5_p'][0],':',df['a5_v'][0] print df['a4_p'][0],':',df['a4_v'][0] print df['a3_p'][0],':',df['a3_v'][0] print df['a2_p'][0],':',df['a2_v'][0] print df['a1_p'][0],':',df['a1_v'][0] print "------------" print df['b1_p'][0],':',df['b1_v'][0] print df['b2_p'][0],':',df['b2_v'][0] print df['b3_p'][0],':',df['b3_v'][0] print df['b4_p'][0],':',df['b4_v'][0] print df['b5_p'][0],':',df['b5_v'][0] print df['price'].agg('max') time.sleep(1)