zoukankan      html  css  js  c++  java
  • ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him that some sequence of eating will make them poisonous.

    Every hour, God Water will eat one kind of food among meat, fish and chocolate. If there are 33 continuous hours when he eats only one kind of food, he will be unhappy. Besides, if there are 33 continuous hours when he eats all kinds of those, with chocolate at the middle hour, it will be dangerous. Moreover, if there are 33 continuous hours when he eats meat or fish at the middle hour, with chocolate at other two hours, it will also be dangerous.

    Now, you are the doctor. Can you find out how many different kinds of diet that can make God Water happy and safe during NN hours? Two kinds of diet are considered the same if they share the same kind of food at the same hour. The answer may be very large, so you only need to give out the answer module 10000000071000000007.

    Input

    The fist line puts an integer TT that shows the number of test cases. (T le 1000T1000)

    Each of the next TT lines contains an integer NN that shows the number of hours. (1 le N le 10^{10}1N1010)

    Output

    For each test case, output a single line containing the answer.

    样例输入

    3
    3
    4
    15

    样例输出

    20
    46
    435170

    题目来源

    ACM-ICPC 2018 焦作赛区网络预赛

    题解:递推

    // a[i]=2*a[i-1]-a[i-2]+3*a[i-3]+2*a[i-4]  (i>2)然后矩阵快速幂

    当然也可以用dls的BM求

    参考代码:

      1 #include<bits/stdc++.h>
      2 using namespace std;
      3 #define rep(i,a,n) for (int i=a;i<n;i++)
      4 #define per(i,a,n) for (int i=n-1;i>=a;i--)
      5 #define pb push_back
      6 #define mp make_pair
      7 #define all(x) (x).begin(),(x).end()
      8 #define fi first
      9 #define se second
     10 #define SZ(x) ((int)(x).size())
     11 typedef vector<int> VI;
     12 typedef long long ll;
     13 typedef pair<int,int> PII;
     14 const ll mod=1000000007;
     15 ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
     16 ll _,n;
     17 namespace linear_seq{
     18     const int N=10010;
     19     ll res[N],base[N],_c[N],_md[N];
     20 
     21     vector<ll> Md;
     22     void mul(ll *a,ll *b,int k) 
     23     {
     24         rep(i,0,k+k) _c[i]=0;
     25         rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
     26         for (int i=k+k-1;i>=k;i--) if (_c[i])
     27             rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
     28         rep(i,0,k) a[i]=_c[i];
     29     }
     30     int solve(ll n,VI a,VI b) 
     31     {
     32         ll ans=0,pnt=0;
     33         int k=SZ(a);
     34         assert(SZ(a)==SZ(b));
     35         rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
     36         Md.clear();
     37         rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
     38         rep(i,0,k) res[i]=base[i]=0;
     39         res[0]=1;
     40         while ((1ll<<pnt)<=n) pnt++;
     41         for (int p=pnt;p>=0;p--) 
     42         {
     43             mul(res,res,k);
     44             if ((n>>p)&1) 
     45             {
     46                 for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
     47                 rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
     48             }
     49         }
     50         rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
     51         if (ans<0) ans+=mod;
     52         return ans;
     53     }
     54     VI BM(VI s) {
     55         VI C(1,1),B(1,1);
     56         int L=0,m=1,b=1;
     57         rep(n,0,SZ(s)) {
     58             ll d=0;
     59             rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
     60             if (d==0) ++m;
     61             else if (2*L<=n) {
     62                 VI T=C;
     63                 ll c=mod-d*powmod(b,mod-2)%mod;
     64                 while (SZ(C)<SZ(B)+m) C.pb(0);
     65                 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
     66                 L=n+1-L; B=T; b=d; m=1;
     67             } else {
     68                 ll c=mod-d*powmod(b,mod-2)%mod;
     69                 while (SZ(C)<SZ(B)+m) C.pb(0);
     70                 rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
     71                 ++m;
     72             }
     73         }
     74         return C;
     75     }
     76     int gao(VI a,ll n){
     77         VI c=BM(a);
     78         c.erase(c.begin());
     79         rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
     80         return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
     81     }
     82 };
     83 int T;
     84 int main() 
     85 {
     86   scanf("%d",&T);
     87     while(T--) 
     88   {
     89     scanf("%lld",&n);
     90         vector<int>v;
     91         v.push_back(3);
     92         v.push_back(9);
     93         v.push_back(20);
     94         v.push_back(46);
     95         v.push_back(106);
     96         v.push_back(244);
     97         v.push_back(560);
     98     v.push_back(1286); 
     99     v.push_back(2956);
    100     v.push_back(6794); 
    101         printf("%lld
    ",linear_seq::gao(v,n-1)%mod);
    102     }
    103     return 0;
    104 }
    View Code

      

  • 相关阅读:
    webOFBiz10.4
    堆栈知识
    eas bos二次开发总结[第三方jar、jcom、二次开发包放置]
    计算机编程英语词汇(三)
    计算机英语(四)
    KDTable 表达式应用工具类
    Verilog 流水线加法器
    datagridview 积累
    ajax 调用 webserver
    windows7 vs2008问题结合
  • 原文地址:https://www.cnblogs.com/csushl/p/9651924.html
Copyright © 2011-2022 走看看