题目链接:
https://vjudge.net/problem/POJ-1251
题目大意:
首先给你一个图,需要你求出最小生成树,输入N个节点,用大写字母表示了节点,然后节点与节点之间有权值。
思路:
这里需要编号,其他的就是模板
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6 #include<queue> 7 #include<stack> 8 #include<map> 9 #include<set> 10 #include<sstream> 11 using namespace std; 12 typedef long long ll; 13 const int maxn = 1e3 + 10; 14 const int INF = 1 << 30; 15 int dir[4][2] = {1,0,0,1,-1,0,0,-1}; 16 int T, n, m; 17 struct edge 18 { 19 int u, v, w; 20 edge(){} 21 edge(int u, int v, int w):u(u), v(v), w(w){} 22 bool operator <(const edge& a)const 23 { 24 return w < a.w; 25 } 26 }; 27 edge a[maxn]; 28 int par[60], high[60]; 29 //初始化n个元素 30 void init(int n) 31 { 32 for(int i = 0; i < n; i++) 33 { 34 par[i] = i; 35 high[i] = 0; 36 } 37 } 38 //查询树的根 39 int Find(int x) 40 { 41 return par[x] == x ? x : par[x] = Find(par[x]);//路径压缩 42 } 43 void unite(int x, int y) 44 { 45 x = Find(x); 46 y = Find(y); 47 if(x == y)return; 48 if(high[x] < high[y])par[x] = y;//y的高度高,将x的父节点设置成y 49 else 50 { 51 par[y] = x; 52 if(high[x] == high[y])high[x]++; 53 } 54 } 55 bool same(int x, int y) 56 { 57 return Find(x) == Find(y); 58 } 59 void kruskal(int n, int m)//点数n,边数m 60 { 61 int sum_mst = 0;//mst权值 62 int num= 0;//已经选择的边的边数 63 sort(a, a + m);//边进行排序 64 init(n);//初始化并查集 65 for(int i = 0; i < m; i++) 66 { 67 int u = a[i].u; 68 int v = a[i].v; 69 if(Find(u - 1) != Find(v - 1))//图最开始的下标是1,并查集是0 70 { 71 //printf("%d %d %d ", u, v, a[i].w); 72 sum_mst += a[i].w; 73 num++; 74 unite(u - 1, v - 1); 75 } 76 if(num >= n - 1)break; 77 } 78 //printf("weight of mst is %d ", sum_mst); 79 cout<<sum_mst<<endl; 80 } 81 map<char, int>id; 82 set<char>s; 83 int getid(char c) 84 { 85 if(s.count(c))return id[c]; 86 else 87 { 88 s.insert(c); 89 return id[c] = s.size(); 90 } 91 } 92 int main() 93 { 94 while(cin >> n && n) 95 { 96 char c, d; 97 id.clear(); 98 s.clear(); 99 int tot = 0; 100 for(int i = 1; i < n; i++) 101 { 102 cin >> c >> m; 103 int u = getid(c), v, w; 104 while(m--) 105 { 106 cin >> d >> w; 107 v = getid(d); 108 a[tot++] = edge(u, v, w); 109 } 110 } 111 kruskal(n, tot); 112 } 113 return 0; 114 }