zoukankan      html  css  js  c++  java
  • hdu---(3555)Bomb(数位dp(入门))

    Bomb

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 7921    Accepted Submission(s): 2778


    Problem Description
    The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
    Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
     
    Input
    The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

    The input terminates by end of file marker.
     
    Output
    For each test case, output an integer indicating the final points of the power.
     
    Sample Input
    3 1 50 500
     
    Sample Output
    0 1 15
    Hint
    From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15.
     
    Author
    fatboy_cw@WHU
     
    Source
     
    题意: 给你一个数n,要你统计出1到n中出现含有49数字的个数: 比如 498,549,49.....
    对于这一道题: 看到一个博客引用了这张图片,觉得说的很清晰,就引用了..
     
    我们对于 i-1长度的数字分析,无疑就这么集中情况(当然只是围绕49来说的哇)首部分析:
                                                              i-1长度                                  那么对于 i长度
    首部为49 ,那么它的格式必然为:              49****                                   ?49****(?可能为9)
     
    首部保函9 ,那么它的格式必然为:             9*****                                   ?9*****(?可能为4)
     
    首部部位49 ,那么它的格式为:                *******                                  ?*******(?可能为9)
     
        我们不妨用dp[i][2]表示首部为49的,dp[i][1]表示首部为9的,dp[i][0]表示首部不为49,于是我们可以发现这样一个规律:
     
         dp[i-1][2]向前移一位,即原来的个位变为十位,十位变为百位的那种移位。 形成dp[i][2],但是需要注意的是:
          当dp[i-1][2]时,其实由我上面说的,?可能为9 ,所以当向前移一位时,?为9的可能性被去掉了。所以
        dp[i-1][2]*10(移动一位时)需要减去 开头为9的那种模式dp[i-1][1],所以得到:
      (1)      dp[i][2]=dp[i-1][2]*10-dp[i-1][1];
        对于i位首部为9那么后面只需要满足不为49即可,刚好满足dp[i][0];
      (2)  所以 dp[i][1]=d[i-1][0];
       对于首部不为49的
           同样也可以分析出来...
          dp[i][0]=dp[i-1][0]*10+dp[i-1][1];
     
    于是得到这样一个预处理方程:
                            dp[i][2]=dp[i-1][2]*10-dp[i-1][1];
                            dp[i][1]=d[i-1][0]; 
                            dp[i][0]=dp[i-1][0]*10+dp[i-1][1];
    代码:详情见代码:
     1 //#define LOCAL
     2 #include<cstdio>
     3 #include<cstring>
     4 #define LL __int64
     5 using namespace std;
     6  const int maxn=25;
     7 LL dp[maxn][3]={0};
     8 int nn[maxn];
     9 int main()
    10 {
    11 
    12   #ifdef LOCAL
    13     freopen("test.in","r",stdin);
    14   #endif
    15  int cas,i;
    16  LL n;
    17  scanf("%d",&cas);
    18  /*数位DP的惯有模式预处理*/
    19  dp[0][0]=1;
    20  for(i=1;i<=20;i++)
    21  {
    22     dp[i][0]=dp[i-1][0]*10-dp[i-1][1];
    23     dp[i][1]=dp[i-1][0];
    24     dp[i][2]=dp[i-1][2]*10+dp[i-1][1];
    25  }
    26  while(cas--)
    27  {
    28    scanf("%I64d",&n);
    29    i=0;
    30    n+=1;
    31    memset(nn,0,sizeof(nn));
    32    while(n>0)
    33    {
    34      nn[++i]=n%10;
    35      n/=10;
    36    }
    37    LL ans=0;
    38    bool tag=0;
    39    int num=0;
    40    for(  ; i>=1  ; i--  )
    41    {
    42          ans+=dp[i-1][2]*nn[i];  /*计算49开头的个数*/
    43          if(tag){
    44         ans+=dp[i-1][0]*nn[i];   /*当前面出现了49的时候,那么后面出现的任何数字也要进行统计*/
    45       }
    46       if(!tag&&nn[i]>4)
    47       {
    48           ans+=dp[i-1][1];      /*如果没有出现49开头,只要首部大于5,那么必定保函有一个49*/
    49       }
    50       if(num==4&&nn[i]==9)
    51              tag=1;
    52       num=nn[i];
    53    }
    54     printf("%I64d
    ",ans);
    55  }
    56  return 0;
    57 }
    View Code
  • 相关阅读:
    直击微软第九频道著名主持Robert Green 对话一站式示例代码库大老板梁梅女士
    微软发布中文版一站式示例代码浏览器
    每日一例,练就编程高手
    微软发布Visual Studio 2012 示例代码浏览器
    微软发布Sample Browser for Windows 8版:5000示例代码,"触手可及"
    arthas使用总结
    前端如何生成二维码
    golang的helloworld以及nonmain package的troubleshooting
    监控文件的网页工具
    postfix + courierimap + squirrelMail 邮件服务器
  • 原文地址:https://www.cnblogs.com/gongxijun/p/3997533.html
Copyright © 2011-2022 走看看