zoukankan      html  css  js  c++  java
  • bzoj5015 [Snoi2017]礼物 矩阵快速幂+二项式展开

    题目传送门

    https://lydsy.com/JudgeOnline/problem.php?id=5015

    题解

    (f_i) 表示第 (i) 个朋友的礼物,(s_i) 表示从 (1)(i)(f_i) 的和。

    [f_i = s_{i-1}+i^k\s_i = s_{i-1}+f_i = 2s_{i-1}+i^k ]

    考虑用矩阵维护转移,但是这个 (i^k) 不太方便转移。

    发现 (k leq 10),可以考虑使用二项式展开。

    [(i+1)^k = sum_{j=0}^k inom{k}{i}i^j ]

    所以可以用矩阵维护一下 (i^j(0 leq j leq k)) 转移就可以了。


    时间复杂度 (O(k^3log n))

    #include<bits/stdc++.h>
    
    #define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
    #define dbg(...) fprintf(stderr, __VA_ARGS__)
    #define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
    #define fi first
    #define se second
    #define pb push_back
    
    template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
    template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
    
    typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
    
    template<typename I> inline void read(I &x) {
    	int f = 0, c;
    	while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
    	x = c & 15;
    	while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
    	f ? x = -x : 0;
    }
    
    const int N = 13 + 3;
    const int P = 1e9 + 7;
    
    ll T;
    int k, n;
    
    inline int smod(int x) { return x >= P ? x - P : x; }
    inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
    inline int fpow(int x, int y) {
    	int ans = 1;
    	for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
    	return ans;
    }
    
    struct Matrix {
    	int a[N][N];
    	
    	inline Matrix() { memset(a, 0, sizeof(a)); }
    	inline Matrix(const int &x) {
    		memset(a, 0, sizeof(a));
    		for (int i = 1; i <= n; ++i) a[i][i] = x;
    	}
    	
    	inline Matrix operator * (const Matrix &b) {
    		Matrix c;
    		for (int k = 1; k <= n; ++k)
    			for (int i = 1; i <= n; ++i)
    				for (int j = 1; j <= n; ++j) sadd(c.a[i][j], (ll)a[i][k] * b.a[k][j] % P);
    		return c;
    	}
    } A, B;
    
    inline Matrix fpow(Matrix x, ll y) {
    	Matrix ans(1);
    	for (; y; y >>= 1, x = x * x) if (y & 1) ans = ans * x;
    	return ans;
    }
    
    inline void work() {
    	B.a[3][1] = 1;
    	A.a[1][1] = 0, A.a[1][2] = 1;
    	A.a[2][1] = 0, A.a[2][2] = 2;
    	A.a[3][3] = 1;
    	for (int i = 4; i <= k + 3; ++i)
    		for (int j = 3; j <= i; ++j) A.a[i][j] = smod(A.a[i - 1][j - 1] + A.a[i - 1][j]);
    	for (int i = 1; i <= n; ++i) sadd(A.a[1][i], A.a[n][i]), sadd(A.a[2][i], A.a[n][i]);
    	printf("%d
    ", B.a[1][1]);
    }
    
    inline void init() {
    	read(T), read(k);
    	n = k + 3;
    }
    
    int main() {
    #ifdef hzhkk
    	freopen("hkk.in", "r", stdin);
    #endif
    	init();
    	work();
    	fclose(stdin), fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    转载:Cgroups 与 Systemd
    转载:linux cgroups 简介
    深入剖析Linux IO原理
    Tomcat zabbix监控、jmx监控、zabbix_java_gateway
    Tomcat 打开jmx
    vsftp、ftps 搭建
    Tomcat 调优
    Tomcat 部署及配置
    SVN 搭建
    Nginx 编译安装
  • 原文地址:https://www.cnblogs.com/hankeke/p/bzoj5015.html
Copyright © 2011-2022 走看看