zoukankan      html  css  js  c++  java
  • BZOJ4407: 于神之怒加强版

    Description

    给下N,M,K.求

    img

    Input

    输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示。

    Output

    如题

    Sample Input

    1 2
    3 3

    Sample Output

    20

    HINT

    1<=N,M,K<=5000000,1<=T<=2000

    Solution

    首先可以推一波式子

    [egin{aligned} &sum_{i=1}^{n}sum_{j=1}^m(i,j)^k\ &=sum_{d=1}^nd^ksum_{i=1}^{n}sum_{j=1}^m[(i,j)=1]\ &=sum_{d=1}^nd^ksum_{i=1}^{n}sum_{j=1}^msum_{x|(i,j)}mu(x)\ &=sum_{d=1}^nd^ksum_{x=1}^nmu(x)lfloorfrac{n}{dx} floorlfloorfrac{m}{dx} floor end{aligned} ]

    发现(d^k)是个完全积性函数,那么可以(O(sqrt{n}*sqrt{n})=O(n))完成单次询问了

    但是这样跑不过

    所以继续推

    [egin{aligned} &设T=dx\ &=sum_{d=1}^nd^ksum_{x=1}^nmu(x)lfloorfrac{n}{dx} floorlfloorfrac{m}{dx} floor\ &=sum_{T=1}^{n}lfloorfrac{n}{T} floorlfloorfrac{m}{T} floorsum_{d|T}mu(frac{T}{d})d^k end{aligned} ]

    发现后面那个玩意可以(nlogn)筛出来,那么可以做到(O(nlogn+Tsqrt{n})),但是我被bzoj的土豆机卡了。。。所以要继续推。

    研究一下后面那堆发现这是个狄利克雷卷积的形式,所以说这是个积性函数,但是莫比乌斯函数里面有个分数的话有点难写,于是根据狄利克雷卷积的定义改一下

    [egin{aligned} &设g(T)=sum_{x|T}mu(x)*(frac{T}{x})^k\ &g(i)=T^k*sum_{x|T}frac{mu(x)}{x^k} end{aligned} ]

    考虑当T为质数的情况,设此时的(T=p)

    [egin{aligned} g(p) &=p^k*sum_{x|p}frac{mu(x)}{x^k}\ &=p^k*left(frac{mu(1)}{1^k}+frac{mu(p)}{p^k} ight)\ &=p^k*(1-frac{1}{p^k})\ &=p^k*frac{p^k-1}{p^k}\ &=p^k-1 end{aligned} ]

    因为(g)是一个积性函数,所以当i,j互质显然有

    [g(i*j)=g(i)*g(j) ]

    考虑(j)(i)的质因数的情况(因为在线性筛过程中(j)必为质数)

    [egin{aligned} &设i=r*j^c(k内不含质因子j)\ &g(i*j)\ &=g(r*j^{c+1})\ &=g(r)*g(j^{c+1})\ &考虑g(j^{c+1})=sum_{x|j^{c+1}}frac{mu(x)}{x^k}\ &显然只有当x=1或j时mu(x)才为1,其他情况为0所以当j的指数大于2时,g值是相同的\ &所以g(j^{c+1})=g(j^c)\ &又因为r和j^{c+1}和j^c互质,所以有\ &g(i*j)=g(r*j^{c+1})=g(r)*g(j^{c+1})=g(r)*g(j^c)=g(r*j^c)=g(i) end{aligned} ]

    综上可得,在线性筛过程中

    [g(i*prime[j])= egin{cases} g(i)*g(prime[j])(i与prime[j]互质)\ g(i)(prime[j]为i的质因子) end{cases} ]

    所以我们用线性筛筛出这个函数(g),就可以(O(n+Tsqrt{n}))的效率了

    这题我写了大半天...主要就卡在最后这个积性函数的推导...

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const ll mod = 1e9 + 7;
    #define N 5000050
     
    ll n, m;
    ll p[N], cnt, mu[N];
    bool vis[N];
    ll F[N], k, id[N], sum[N];
     
    ll power(ll a, ll b) { ll ans = 1;
        while(b) {
            if(b & 1) ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans % mod;
    }
    
    void init() {
        cnt = 0;
        mu[1] = id[1] = F[1] = 1;
        for(ll i = 2; i < N; ++i) {
            if(!vis[i]) 
    			id[i] = power(i, k) % mod, mu[i] = -1, p[++cnt] = i, F[i] = ((id[i] - 1) * power(id[i], mod - 2) + mod) % mod;
            for(ll j = 1; j <= cnt && 1ll * p[j] * i < N; ++j) {
                vis[i * p[j]] = 1;
                id[i * p[j]] = id[i] * id[p[j]] % mod;
                if(i % p[j] == 0) { F[i * p[j]] = F[i] % mod; break; }
                mu[i * p[j]] = -mu[i]; 
                F[i * p[j]] = F[i] * F[p[j]] % mod;
            }
        }
        for(ll i = 1; i < N; ++i) sum[i] = (sum[i - 1] + F[i] * id[i] % mod) % mod;
    } 
     
    ll calc(ll n, ll m) {
        ll ans = 0;
        if(n > m) swap(n, m);
        for(ll l = 1, r; l <= n; l = r + 1) {
            r = min(n / (n / l), m / (m / l));
            ans += 1ll * (n / l) % mod * (m / l) % mod * (sum[r] - sum[l - 1] + mod) % mod;
        }
        return ans % mod;
    }
     
    int main() {
        int T; scanf("%d%lld", &T, &k);
        init();
        while(T--) {
            scanf("%lld%lld", &n, &m);
            printf("%lld
    ", (calc(n, m) + mod) % mod);
        }
    }
    
  • 相关阅读:
    泛型类,泛型方法的使用
    Mapper注解与MapperScan注解
    Configuration注解
    LA 4254 Processor (二分 + 贪心)
    UVa 10382 Watering Grass (贪心 区间覆盖)
    UVA 10795 A Different Task (递归)
    LA 3401 Colored Cubes (搜索 + 暴力)
    uva11464 Even Parity (枚举+递推)
    icpc2021 昆明 K (dfs爆搜)
    hdu3533 (bfs + 模拟)
  • 原文地址:https://www.cnblogs.com/henry-1202/p/10338572.html
Copyright © 2011-2022 走看看