zoukankan      html  css  js  c++  java
  • LA 4256

    Traveling salesmen of nhn. (the prestigious Korean internet company) report their current location to the company on a regular basis. They also have to report their new location to the company if they are moving to another location. The company keep each salesman's working path on a map of his working area and uses this path information for the planning of the next work of the salesman. The map of a salesman's working area is represented as a connected and undirected graph, where vertices represent the possible locations of the salesman an edges correspond to the possible movements between locations. Therefore the salesman's working path can be denoted by a sequence of vertices in the graph. Since each salesman reports his position regularly an he can stay at some place for a very long time, the same vertices of the graph can appear consecutively in his working path. Let a salesman's working path be correct if two consecutive vertices correspond either the same vertex or two adjacent vertices in the graph.

    For example on the following graph representing the working area of a salesman,

    epsfbox{p4256.eps}<tex2html_verbatim_mark>

    a reported working path [1 2 2 6 5 5 5 7 4] is a correct path. But a reported working path [1 2 2 7 5 5 5 7 4] is not a correct path since there is no edge in the graph between vertices 2 a 7. If we assume that the salesman reports his location every time when he has to report his location (but possibly incorrectly), then the correct path could be [1 2 2 4 5 5 5 7 4], [1 2 4 7 5 5 5 7 4], or [1 2 2 6 5 5 5 7 4].

    The length of a working path is the number of vertices in the path. We define the distance between two pathsA = a1a2...an <tex2html_verbatim_mark>and B = b1b2...bn <tex2html_verbatim_mark>of the same length n <tex2html_verbatim_mark>as

    dist(AB) = $displaystyle sum^{{n}}_{{i=1}}$d (aibi)

    <tex2html_verbatim_mark>

    where

    d (ab) = $displaystyle left{vphantom{ egin{array}{cc} 0 & mbox{if } a=b \  1 & mbox{otherwise} end{array} }
ight.$$displaystyle egin{array}{cc} 0 & mbox{if } a=b \  1 & mbox{otherwise} end{array}$

    <tex2html_verbatim_mark>

    Given a graph representing the working area of a salesman and a working path (possible not a correct path), A<tex2html_verbatim_mark>, of a salesman, write a program to compute a correct working path, B <tex2html_verbatim_mark>, of the same length where the distancedist(AB) <tex2html_verbatim_mark>is minimized.

    Input 

    The program is to read the input from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases (T) <tex2html_verbatim_mark>is given in the first line of the input. The first line of each test case contains two integers n1<tex2html_verbatim_mark>, n2 <tex2html_verbatim_mark>(3$ le$n1$ le$100, 2$ le$n2$ le$4, 950) <tex2html_verbatim_mark>where n1 <tex2html_verbatim_mark>is the number of vertices of the graph representing the working map of a salesman and n2 <tex2html_verbatim_mark>is the number of edges in the graph. The input graph is a connected graph. Each vertex of the graph is numbered from 1 to n1 <tex2html_verbatim_mark>. In the following n2 <tex2html_verbatim_mark>lines, each line contains a pair of vertices which represent an edge of the graph. The last line of each test case contains information on a working path of the salesman. The first integer n <tex2html_verbatim_mark>(2$ le$n$ le$200) <tex2html_verbatim_mark>in the line is the length of the path and the following n integers represent the sequence of vertices in the working path.

    Output 

    Your program is to write to standard output. Print one line for each test case. The line should contain the minimum distance of the input path to a correct path of the same length.

    Sample Input 

    2 
    7 9 
    1 2 
    2 3 
    2 4 
    2 6 
    3 4 
    4 5 
    5 6 
    7 4 
    7 5 
    9 1 2 2 7 5 5 5 7 4 
    7 9 
    1 2 
    2 3 
    2 4 
    2 6 
    3 4 
    4 5 
    5 6 
    7 4 
    7 5 
    9 1 2 2 6 5 5 5 7 4
    

    Sample Output 

    1 
    0

    设dp[i][j]是当前序列第i个数选择j的最小dis所以 dp[i][j] = min(dp[i][j],dp[i - 1][k] + (j != a[i])) k j 连通
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 
     6 using namespace std;
     7 
     8 const int MAX_N = 205;
     9 const int edge = 5000;
    10 int N,M;
    11 int a[MAX_N];
    12 int dp1[MAX_N],dp2[MAX_N];
    13 bool f[MAX_N][MAX_N];
    14 int n;
    15 
    16 void solve() {
    17         int *now = dp2,*last = dp1;
    18         for(int i = 1; i <= n; ++i) {
    19                 fill(now + 1,now + N + 1,n + 1);
    20                 for(int j = 1; j <= N; ++j) {
    21                         int v = a[i] != j;
    22                         for(int k = 1; k <= N; ++k) {
    23                                 if(!f[j][k]) continue;
    24                                 if(last[k] != n + 1)
    25                                 now[j] = min(now[j],last[k] + v);
    26                         }
    27 
    28                 }
    29                 swap(now,last);
    30         }
    31 
    32         int ans = n + 1;
    33         //for(int i = 1; i  <= N; ++i) printf("%d",last[i]);
    34         //printf("
    ");
    35         for(int i = 1; i <= N; ++i) ans = min(ans,last[i]);
    36         printf("%d
    ",ans);
    37 }
    38 
    39 int main()
    40 {
    41    // freopen("sw.in","r",stdin);
    42     int t;
    43     scanf("%d",&t);
    44     while(t--) {
    45             scanf("%d%d",&N,&M);
    46 
    47             memset(dp1,0,sizeof(dp1));
    48             memset(dp2,0,sizeof(dp2));
    49             memset(f,0,sizeof(f));
    50             for(int i = 1; i <= N; ++i) f[i][i] = 1;
    51 
    52             for(int i = 0; i <  M; ++i) {
    53                     int u,v;
    54                     scanf("%d%d",&u,&v);
    55                     f[u][v] = f[v][u] = 1;
    56 
    57             }
    58             scanf("%d",&n);
    59             for(int i = 1; i <= n; ++i) {
    60                     scanf("%d",&a[i]);
    61             }
    62 
    63             solve();
    64 
    65     }
    66 
    67     return 0;
    68 }
    View Code

  • 相关阅读:
    Windows Server 2003下ASP.NET无法识别IE11的解决方法
    SQL Server2005中使用XML-数据类型、查询与修改
    连接SQLServer时提示“但是在登录前的握手期间发生错误。 (provider: SSL Provider, error: 0
    无法将类型为 excel.applicationclass 的 com 强制转换为接口类型 的解决方法。
    C# WinForm使用Aspose.Cells.dll 导出导入Excel/Doc 完整实例教程
    技巧 获取电脑硬件信息 -转发
    浏览器无需下载插件 解决网页长截图的小技巧 -转发
    note 9 列表、时间复杂度、排序
    note 8 字符串
    note 7 递归函数
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3695172.html
Copyright © 2011-2022 走看看