zoukankan      html  css  js  c++  java
  • 在colab上使用yolo v3训练自己的数据集

    在colab上使用yolo v3训练自己的数据集

    本次用到的数据集是天池:零基础入门CV - 街景字符编码识别的数据集

    其实这个项目中yolo3yolo4等都有,但是这里就只用yolo3做测试了,yolo3和yolo4的使用方法差不多

    关于那个竞赛,有位博主已经写过了如何使用yolo获得较好的效果:https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12586969.1002.108.2ce879de4cKZcz&postId=118780
    但是我这里主要关注于把项目先跑通,最佳实践之后可以参考

    reference:

    因为是ipunb转的markdown,所以阅读起来可能不是很好看,可以下载源文件:https://files.cnblogs.com/files/jiading/yolo_in_colab.zip。注意源文件不包括本文最后的结论部分

    #查看colab分配的gpu
    !/opt/bin/nvidia-smi
    
    Mon Sep 28 05:14:09 2020       
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 418.67       Driver Version: 418.67       CUDA Version: 10.1     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |===============================+======================+======================|
    |   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
    | N/A   36C    P8     9W /  70W |      0MiB / 15079MiB |      0%      Default |
    +-------------------------------+----------------------+----------------------+
                                                                                   
    +-----------------------------------------------------------------------------+
    | Processes:                                                       GPU Memory |
    |  GPU       PID   Type   Process name                             Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+
    
    #下载项目
    !git clone https://github.com/AlexeyAB/darknet
    
    Cloning into 'darknet'...
    remote: Enumerating objects: 14321, done.
    remote: Total 14321 (delta 0), reused 0 (delta 0), pack-reused 14321
    Receiving objects: 100% (14321/14321), 12.87 MiB | 22.64 MiB/s, done.
    Resolving deltas: 100% (9772/9772), done.
    
    # 修改makefile 将OpenCV和GPU设置为可用
    %cd darknet
    '''
    Linux sed 命令是利用脚本来处理文本文件
    sed 可依照脚本的指令来处理、编辑文本文件
    i :插入, i 的后面可以接字串,而这些字串会在新的一行出现(目前的上一行);
    '''
    !sed -i 's/OPENCV=0/OPENCV=1/' Makefile
    !sed -i 's/GPU=0/GPU=1/' Makefile
    !sed -i 's/CUDNN=0/CUDNN=1/' Makefile
    
    /content/darknet
    
    #验证CUDA版本
    !/usr/local/cuda/bin/nvcc --version
    
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2019 NVIDIA Corporation
    Built on Sun_Jul_28_19:07:16_PDT_2019
    Cuda compilation tools, release 10.1, V10.1.243
    

    运行demo显示bbox

    此步只为了检验环境和编译成功与否

    #下载训练好的coco数据集权重,保存到darknet文件夹中
    #!wget https://pjreddie.com/media/files/yolov3.weights
    
    #可以把权重保存下来,之后直接从google drive拉就可以了,比下载快点
    #先保存
    #!cp /content/darknet/yolov3.weights '/content/drive/My Drive/cvComp1Realted/yolov3.weights'
    
    #再拉取
    !cp '/content/drive/My Drive/cvComp1Realted/yolov3.weights' /content/darknet/yolov3.weights
    
    #编译项目生成darknet运行程序
    !make
    
    #定义imshow 调用opencv显示图片
    def imShow(path):
      import cv2
      import matplotlib.pyplot as plt
      %matplotlib inline
    
      image = cv2.imread(path)
      height, width = image.shape[:2]
      resized_image = cv2.resize(image,(3*width, 3*height), interpolation = cv2.INTER_CUBIC)
    
      fig = plt.gcf()
      fig.set_size_inches(18, 10)
      plt.axis("off")
      plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
      plt.show()
    
    #运行demo
    !./darknet detect cfg/yolov3.cfg yolov3.weights data/person.jpg
    imShow('predictions.jpg')
    
     CUDA-version: 10010 (10010), cuDNN: 7.6.5, GPU count: 1  
     OpenCV version: 3.2.0
     0 : compute_capability = 750, cudnn_half = 0, GPU: Tesla T4 
    net.optimized_memory = 0 
    mini_batch = 1, batch = 1, time_steps = 1, train = 0 
       layer   filters  size/strd(dil)      input                output
       0 conv     32       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  32 0.299 BF
       1 conv     64       3 x 3/ 2    416 x 416 x  32 ->  208 x 208 x  64 1.595 BF
       2 conv     32       1 x 1/ 1    208 x 208 x  64 ->  208 x 208 x  32 0.177 BF
       3 conv     64       3 x 3/ 1    208 x 208 x  32 ->  208 x 208 x  64 1.595 BF
       4 Shortcut Layer: 1,  wt = 0, wn = 0, outputs: 208 x 208 x  64 0.003 BF
       5 conv    128       3 x 3/ 2    208 x 208 x  64 ->  104 x 104 x 128 1.595 BF
       6 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
       7 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
       8 Shortcut Layer: 5,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
       9 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
      10 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
      11 Shortcut Layer: 8,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
      12 conv    256       3 x 3/ 2    104 x 104 x 128 ->   52 x  52 x 256 1.595 BF
      13 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      14 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      15 Shortcut Layer: 12,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      16 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      17 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      18 Shortcut Layer: 15,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      19 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      20 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      21 Shortcut Layer: 18,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      22 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      23 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      24 Shortcut Layer: 21,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      25 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      26 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      27 Shortcut Layer: 24,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      28 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      29 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      30 Shortcut Layer: 27,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      31 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      32 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      33 Shortcut Layer: 30,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      34 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      35 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      36 Shortcut Layer: 33,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      37 conv    512       3 x 3/ 2     52 x  52 x 256 ->   26 x  26 x 512 1.595 BF
      38 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      39 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      40 Shortcut Layer: 37,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      41 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      42 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      43 Shortcut Layer: 40,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      44 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      45 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      46 Shortcut Layer: 43,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      47 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      48 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      49 Shortcut Layer: 46,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      50 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      51 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      52 Shortcut Layer: 49,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      53 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      54 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      55 Shortcut Layer: 52,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      56 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      57 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      58 Shortcut Layer: 55,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      59 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      60 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      61 Shortcut Layer: 58,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      62 conv   1024       3 x 3/ 2     26 x  26 x 512 ->   13 x  13 x1024 1.595 BF
      63 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      64 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      65 Shortcut Layer: 62,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      66 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      67 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      68 Shortcut Layer: 65,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      69 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      70 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      71 Shortcut Layer: 68,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      72 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      73 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      74 Shortcut Layer: 71,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      75 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      76 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      77 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      78 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      79 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      80 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      81 conv    255       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 255 0.088 BF
      82 yolo
    [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
      83 route  79 		                           ->   13 x  13 x 512 
      84 conv    256       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 256 0.044 BF
      85 upsample                 2x    13 x  13 x 256 ->   26 x  26 x 256
      86 route  85 61 	                           ->   26 x  26 x 768 
      87 conv    256       1 x 1/ 1     26 x  26 x 768 ->   26 x  26 x 256 0.266 BF
      88 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      89 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      90 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      91 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      92 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      93 conv    255       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 255 0.177 BF
      94 yolo
    [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
      95 route  91 		                           ->   26 x  26 x 256 
      96 conv    128       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 128 0.044 BF
      97 upsample                 2x    26 x  26 x 128 ->   52 x  52 x 128
      98 route  97 36 	                           ->   52 x  52 x 384 
      99 conv    128       1 x 1/ 1     52 x  52 x 384 ->   52 x  52 x 128 0.266 BF
     100 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
     101 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
     102 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
     103 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
     104 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
     105 conv    255       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 255 0.353 BF
     106 yolo
    [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
    Total BFLOPS 65.879 
    avg_outputs = 532444 
     Allocate additional workspace_size = 52.43 MB 
    Loading weights from yolov3.weights...
     seen 64, trained: 32013 K-images (500 Kilo-batches_64) 
    Done! Loaded 107 layers from weights-file 
     Detection layer: 82 - type = 28 
     Detection layer: 94 - type = 28 
     Detection layer: 106 - type = 28 
    data/person.jpg: Predicted in 41.478000 milli-seconds.
    dog: 99%
    person: 100%
    horse: 100%
    Unable to init server: Could not connect: Connection refused
    
    (predictions:1181): Gtk-WARNING **: 05:16:13.455: cannot open display: 
    

    png

    将我们cv入门赛的资料解压到目录下

    #先查看一下当前位置
    !pwd
    
    /content/darknet
    
    #把原始数据从google drive拉下来
    !mkdir /content/input
    !mkdir /content/input/train
    !mkdir /content/input/val
    !mkdir /content/input/test
    #路径中有空格的话需要用引号引住
    !unzip '/content/drive/My Drive/cvComp1Realted/mchar_train.zip' -d /content/input/train
    !unzip '/content/drive/My Drive/cvComp1Realted/mchar_val.zip' -d /content/input/val
    !unzip '/content/drive/My Drive/cvComp1Realted/mchar_test_a.zip' -d /content/input/test
    !cp '/content/drive/My Drive/cvComp1Realted/mchar_train.json' -d /content/input
    !cp '/content/drive/My Drive/cvComp1Realted/mchar_val.json' -d /content/input
    

    按照yolo的格式要求构造数据集

    Anontations用于存放标签xml文件
    JPEGImage用于存放图像
    ImageSets内的Main文件夹用于存放生成的图片名字,例如:

    #按照voc数据集的格式创建文件夹
    !mkdir /content/VOCdevkit/
    !mkdir /content/VOCdevkit/VOC2007
    !mkdir /content/VOCdevkit/VOC2007/Annotations
    !mkdir /content/VOCdevkit/VOC2007/ImageSets
    !mkdir /content/VOCdevkit/VOC2007/JPEGImages
    !mkdir /content/VOCdevkit/VOC2007/ImageSets/Main
    !mkdir /content/VOCdevkit/VOC2007/labels
    
    import glob
    #构造图片名称保存到ImageSets中
    test_path = glob.glob('/content/input/test/mchar_test_a/*.png')
    train_path=glob.glob('/content/input/train/mchar_train/*.png')
    val_path=glob.glob('/content/input/val/mchar_val/*.png')
    
    #路径长这样
    train_path[0]
    
    '/content/input/train/mchar_train/000653.png'
    
    #把原始图片重命名(因为原始图片在trainval	est中都是从00000.png开始的,所以放在一起会有重名)并且都拷贝到JPEGImages中,且写入到txt文件中
    from shutil import copyfile
    import os
    path='/content/VOCdevkit/VOC2007/JPEGImages'
    #training part
    with open('/content/VOCdevkit/VOC2007/ImageSets/Main/train.txt','w') as f:
      for item in train_path:
        splited=item.split('/')
        filename='train_'+splited[5].split('.')[0]
        topath=os.path.join(path,filename+'.png')
        f.write(os.path.join(path,filename)+'.png
    ')
        copyfile(item,topath)
    #val part
    with open('/content/VOCdevkit/VOC2007/ImageSets/Main/val.txt','w') as f:
      for item in val_path:
        splited=item.split('/')
        filename='val_'+splited[5].split('.')[0]
        topath=os.path.join(path,filename+'.png')
        f.write(os.path.join(path,filename)+'.png
    ')
        copyfile(item,topath)
    #test part
    with open('/content/VOCdevkit/VOC2007/ImageSets/Main/test.txt','w') as f:
      for item in test_path:
        splited=item.split('/')
        filename='test_'+splited[5].split('.')[0]
        topath=os.path.join(path,filename+'.png')
        f.write(os.path.join(path,filename)+'.png
    ')
        copyfile(item,topath)
    

    构造xml格式的label文件

    xml文件格式要求如下图:

    #读取我们json格式的label文件
    import json
    train_labels=json.load(open('/content/input/mchar_train.json'))
    val_labels=json.load(open('/content/input/mchar_val.json'))
    
    #读一个label看看
    train_labels['000000.png']
    
    {'height': [219, 219],
     'label': [1, 9],
     'left': [246, 323],
     'top': [77, 81],
     'width': [81, 96]}
    
    #key为不加前缀的文件名,type_name为train/test/val
    #pic_path填粘贴后的地址即可
    #这里看着代码多,其实是用纯代码的方式写了一个xml文件,要简化的话其实可以弄一个xml模板然后往里面填内容
    def create_xml(key,value,type_name,xml_path,pic_path):
      from PIL import Image
      import os
      import xml.dom.minidom as minidom
      filename=type_name+'_'+key.split('.')[0]
      with open(os.path.join(xml_path,filename+'.xml'),'w') as f:
        dom=minidom.Document()
        annotation_node=dom.createElement('annotation')
    
        folder_node=dom.createElement('folder')
        name_text_value = dom.createTextNode("VOC2007")
        folder_node.appendChild(name_text_value)
        annotation_node.appendChild(folder_node)
    
        filename_node=dom.createElement('filename')
        name_text_value = dom.createTextNode(filename+'.png')
        filename_node.appendChild(name_text_value)
        annotation_node.appendChild(filename_node)
    
        source_node=dom.createElement('source')
        database_node=dom.createElement('database')
        name_text_value = dom.createTextNode("My Database")
        database_node.appendChild(name_text_value)
        source_node.appendChild(database_node)
        annotation_node_2=dom.createElement('annotation')
        name_text_value = dom.createTextNode("PASCAL VOC2007")
        annotation_node_2.appendChild(name_text_value)
        source_node.appendChild(annotation_node_2)
        image_node=dom.createElement('image')
        name_text_value = dom.createTextNode("flickr")
        image_node.appendChild(name_text_value)
        source_node.appendChild(image_node)
        flickrid_node=dom.createElement('flickrid')
        name_text_value = dom.createTextNode("NULL")
        flickrid_node.appendChild(name_text_value)
        source_node.appendChild(flickrid_node)
        annotation_node.appendChild(source_node)
    
        owner_node=dom.createElement('owner')
        flickrid_node_2=dom.createElement('flickrid')
        name_text_value = dom.createTextNode("NULL")
        flickrid_node_2.appendChild(name_text_value)
        owner_node.appendChild(flickrid_node_2)
        name_node=dom.createElement('name')
        name_text_value = dom.createTextNode("company")
        name_node.appendChild(name_text_value)
        owner_node.appendChild(name_node)
        annotation_node.appendChild(owner_node)
    
        size_node=dom.createElement('size')
        img = Image.open(os.path.join(pic_path,filename+'.png'))
        width_node=dom.createElement('width')
        name_text_value = dom.createTextNode(str(img.width))
        width_node.appendChild(name_text_value)
        height_node=dom.createElement('height')
        name_text_value = dom.createTextNode(str(img.height))
        height_node.appendChild(name_text_value)
        depth_node=dom.createElement('depth')
        name_text_value = dom.createTextNode(str(3))
        depth_node.appendChild(name_text_value)
        size_node.appendChild(width_node)
        size_node.appendChild(height_node)
        size_node.appendChild(depth_node)
        annotation_node.appendChild(size_node)
    
        segmented_node=dom.createElement('segmented')
        name_text_value = dom.createTextNode(str(0))
        segmented_node.appendChild(name_text_value)
        annotation_node.appendChild(segmented_node)
    
        if value is not None:
          labels=value['label']
          index=0
          for label in labels:
            object_node=dom.createElement('object')
            name_node_2=dom.createElement('name')
            name_text_value = dom.createTextNode(str(label))
            name_node_2.appendChild(name_text_value)
            object_node.appendChild(name_node_2)
    
            pose_node=dom.createElement('pose')
            name_text_value = dom.createTextNode('Unspecified')
            pose_node.appendChild(name_text_value)
            object_node.appendChild(pose_node)
    
            truncated_node=dom.createElement('truncated')
            name_text_value = dom.createTextNode(str(0))
            truncated_node.appendChild(name_text_value)
            object_node.appendChild(truncated_node)
    
            difficult_node=dom.createElement('difficult')
            name_text_value = dom.createTextNode(str(0))
            difficult_node.appendChild(name_text_value)
            object_node.appendChild(difficult_node)
    
            bndbox_node=dom.createElement('bndbox')
            xmin_node=dom.createElement('xmin')
            name_text_value = dom.createTextNode(str(value['left'][index]))
            xmin_node.appendChild(name_text_value)
            bndbox_node.appendChild(xmin_node)
            ymin_node=dom.createElement('ymin')
            name_text_value = dom.createTextNode(str(value['top'][index]))
            ymin_node.appendChild(name_text_value)
            bndbox_node.appendChild(ymin_node)
            xmax_node=dom.createElement('xmax')
            name_text_value = dom.createTextNode(str(value['left'][index]+value['width'][index]))
            xmax_node.appendChild(name_text_value)
            bndbox_node.appendChild(xmax_node)
            ymax_node=dom.createElement('ymax')
            name_text_value = dom.createTextNode(str(value['top'][index]+value['height'][index]))
            ymax_node.appendChild(name_text_value)
            bndbox_node.appendChild(ymax_node)
            object_node.appendChild(bndbox_node)
    
            annotation_node.appendChild(object_node)
            index+=1
        dom.appendChild(annotation_node)
        dom.writexml(f, addindent='
    ', encoding='utf-8')
    
    #创建一个xml试一试
    #def create_xml(key,value,type_name,xml_path,pic_path):
    xml_path='/content/VOCdevkit/VOC2007/Annotations'
    pic_path='/content/VOCdevkit/VOC2007/JPEGImages'
    create_xml('000000.png',train_labels['000000.png'],'train',xml_path=xml_path,pic_path=pic_path)
    
    #没有问题了,就把所有的都转换掉
    for (key,value) in train_labels.items():
      try:
        create_xml(key,value,'train',xml_path=xml_path,pic_path=pic_path)
      except (FileNotFoundError):
        print(key)
        continue
    for (key,value) in val_labels.items():
      try:
        create_xml(key,value,'val',xml_path=xml_path,pic_path=pic_path)
      except (FileNotFoundError):
        print(key)
        continue
    #test的xml做不做都行,我在voc_label.py中把test部分删了
    '''
    test_path = glob.glob('/content/input/test/mchar_test_a/*.png')
    for i in test_path:
      name=i.split('/')
      try:
        create_xml(name[len(name)-1],None,'test',xml_path=xml_path,pic_path=pic_path)
      except (FileNotFoundError):
        print(name[len(name)-1])
        continue
    '''
    
    "
    test_path = glob.glob('/content/input/test/mchar_test_a/*.png')
    for i in test_path:
      name=i.split('/')
      try:
        create_xml(name[len(name)-1],None,'test',xml_path=xml_path,pic_path=pic_path)
      except (FileNotFoundError):
        print(name[len(name)-1])
        continue
    "
    
    #这个colab环境里面是有的
    !pip install opencv-python
    
    Requirement already satisfied: opencv-python in /usr/local/lib/python3.6/dist-packages (4.1.2.30)
    Requirement already satisfied: numpy>=1.11.3 in /usr/local/lib/python3.6/dist-packages (from opencv-python) (1.18.5)
    

    修改参数:

    进入cfg文件夹,修改yolov3.cfg中:

    • 文本最开始的batch和subdivision
      (colab使用的是16GB显存的Tesla T4,batch设置为128比较合适)
    • 文本最后三处[yolo]标签中的classes和classes前面的一个filters(等于(5+类别数)*3)
    !pwd
    
    /content/darknet
    
    #写train.data文件
    with(open('train.data','w')) as f:
      f.write('classes=10
    train=/content/VOCdevkit/VOC2007/ImageSets/Main/train.txt
    valid=/content/VOCdevkit/VOC2007/ImageSets/Main/val.txt
    names=train.names
    backup=/content/drive/My Drive/cvComp1Realted/backup')
    
    #写train.names文件
    with(open('train.names','w'))as f:
      f.write('0
    1
    2
    3
    4
    5
    6
    7
    8
    9')
    
    #!cp /content/darknet/scripts/voc_label.py /content/
    

    这里对voc_label.py文件进行了修改,修改后的文件如下:

    import xml.etree.ElementTree as ET
    import pickle
    import os
    from os import listdir, getcwd
    from os.path import join
    
    #sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
    sets=[ ('2007', 'train'), ('2007', 'val')]
    
    #classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
    classes=['0','1','2','3','4','5','6','7','8','9']
    
    def convert(size, box):
        dw = 1./(size[0])
        dh = 1./(size[1])
        x = (box[0] + box[1])/2.0 - 1
        y = (box[2] + box[3])/2.0 - 1
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x*dw
        w = w*dw
        y = y*dh
        h = h*dh
        return (x,y,w,h)
    
    def convert_annotation(year, image_id):
        image_ids=image_id.split('/')
        image_id=image_ids[len(image_ids)-1]
        image_id=image_id.split('.')[0]
        in_file = open('/content/VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
        out_file = open('/content/VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
        tree=ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
    
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult)==1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
            bb = convert((w,h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '
    ')
    
    wd = getcwd()
    
    for year, image_set in sets:
        if not os.path.exists('/content/VOCdevkit/VOC%s/labels/'%(year)):
            os.makedirs('/content/VOCdevkit/VOC%s/labels/'%(year))
        image_ids = open('/content/VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
        list_file = open('%s_%s.txt'%(year, image_set), 'w')
        for image_id in image_ids:
            list_file.write(image_id+'
    ')
            convert_annotation(year, image_id)
        list_file.close()
    
    os.system("cat 2007_train.txt 2007_val.txt  > train.txt")
    os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt > train.all.txt")
    
    
    
    #保存修改后的voc_label.py
    #!cp /content/voc_label.py '/content/drive/My Drive/cvComp1Realted/voc_label.py'
    
    #加载
    !cp '/content/drive/My Drive/cvComp1Realted/voc_label.py' /content/voc_label.py
    
    !python /content/voc_label.py
    
    cat: 2007_test.txt: No such file or directory
    
    #开启训练
    !./darknet detector train /content/darknet/train.data cfg/yolov3.cfg yolov3.weights -dont_show  -map
    
    #!cp /content/darknet/backup/yolov3_last.weights '/content/drive/My Drive/cvComp1Realted/backup/yolov3_last.weights'
    
    #load back
    !cp '/content/drive/My Drive/cvComp1Realted/backup/yolov3_last.weights' /content/darknet/backup/yolov3_last.weights
    
    #测试一张
    !./darknet detector test /content/darknet/train.data /content/darknet/cfg/yolov3.cfg /content/darknet/backup/yolov3_last.weights /content/input/val/mchar_val/000001.png -i 0 -thresh 0.05
    imShow('predictions.jpg')
    
     CUDA-version: 10010 (10010), cuDNN: 7.6.5, GPU count: 1  
     OpenCV version: 3.2.0
     0 : compute_capability = 750, cudnn_half = 0, GPU: Tesla T4 
    net.optimized_memory = 0 
    mini_batch = 1, batch = 1, time_steps = 1, train = 0 
       layer   filters  size/strd(dil)      input                output
       0 conv     32       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  32 0.299 BF
       1 conv     64       3 x 3/ 2    416 x 416 x  32 ->  208 x 208 x  64 1.595 BF
       2 conv     32       1 x 1/ 1    208 x 208 x  64 ->  208 x 208 x  32 0.177 BF
       3 conv     64       3 x 3/ 1    208 x 208 x  32 ->  208 x 208 x  64 1.595 BF
       4 Shortcut Layer: 1,  wt = 0, wn = 0, outputs: 208 x 208 x  64 0.003 BF
       5 conv    128       3 x 3/ 2    208 x 208 x  64 ->  104 x 104 x 128 1.595 BF
       6 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
       7 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
       8 Shortcut Layer: 5,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
       9 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
      10 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
      11 Shortcut Layer: 8,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
      12 conv    256       3 x 3/ 2    104 x 104 x 128 ->   52 x  52 x 256 1.595 BF
      13 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      14 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      15 Shortcut Layer: 12,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      16 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      17 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      18 Shortcut Layer: 15,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      19 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      20 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      21 Shortcut Layer: 18,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      22 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      23 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      24 Shortcut Layer: 21,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      25 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      26 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      27 Shortcut Layer: 24,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      28 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      29 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      30 Shortcut Layer: 27,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      31 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      32 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      33 Shortcut Layer: 30,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      34 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
      35 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
      36 Shortcut Layer: 33,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
      37 conv    512       3 x 3/ 2     52 x  52 x 256 ->   26 x  26 x 512 1.595 BF
      38 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      39 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      40 Shortcut Layer: 37,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      41 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      42 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      43 Shortcut Layer: 40,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      44 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      45 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      46 Shortcut Layer: 43,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      47 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      48 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      49 Shortcut Layer: 46,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      50 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      51 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      52 Shortcut Layer: 49,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      53 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      54 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      55 Shortcut Layer: 52,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      56 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      57 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      58 Shortcut Layer: 55,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      59 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      60 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      61 Shortcut Layer: 58,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
      62 conv   1024       3 x 3/ 2     26 x  26 x 512 ->   13 x  13 x1024 1.595 BF
      63 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      64 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      65 Shortcut Layer: 62,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      66 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      67 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      68 Shortcut Layer: 65,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      69 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      70 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      71 Shortcut Layer: 68,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      72 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      73 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      74 Shortcut Layer: 71,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
      75 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      76 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      77 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      78 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      79 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
      80 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
      81 conv     45       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x  45 0.016 BF
      82 yolo
    [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
      83 route  79 		                           ->   13 x  13 x 512 
      84 conv    256       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 256 0.044 BF
      85 upsample                 2x    13 x  13 x 256 ->   26 x  26 x 256
      86 route  85 61 	                           ->   26 x  26 x 768 
      87 conv    256       1 x 1/ 1     26 x  26 x 768 ->   26 x  26 x 256 0.266 BF
      88 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      89 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      90 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      91 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
      92 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
      93 conv     45       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x  45 0.031 BF
      94 yolo
    [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
      95 route  91 		                           ->   26 x  26 x 256 
      96 conv    128       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 128 0.044 BF
      97 upsample                 2x    26 x  26 x 128 ->   52 x  52 x 128
      98 route  97 36 	                           ->   52 x  52 x 384 
      99 conv    128       1 x 1/ 1     52 x  52 x 384 ->   52 x  52 x 128 0.266 BF
     100 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
     101 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
     102 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
     103 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
     104 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
     105 conv     45       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x  45 0.062 BF
     106 yolo
    [yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
    Total BFLOPS 65.370 
    avg_outputs = 518514 
     Allocate additional workspace_size = 52.43 MB 
    Loading weights from /content/darknet/backup/yolov3_last.weights...
     seen 64, trained: 32038 K-images (500 Kilo-batches_64) 
    Done! Loaded 107 layers from weights-file 
     Detection layer: 82 - type = 28 
     Detection layer: 94 - type = 28 
     Detection layer: 106 - type = 28 
    /content/input/val/mchar_val/000001.png: Predicted in 40.634000 milli-seconds.
    1: 6%
    Unable to init server: Could not connect: Connection refused
    
    (predictions:1358): Gtk-WARNING **: 05:21:04.194: cannot open display: 
    

    png


    结论

    其实我在尝试的时候,最后的预测如果使用默认的置信度(0.25)是出不来框的,我这里在预测时将置信度通过-thresh 0.05调节到了0.05,当然不能应用(误差太大),只是为了证明项目的流程没有问题。但精度不足的可能原因有:

    • 训练不足:实测colab在使用shell命令训练一段时间后会断开,这一点我尝试了三次都是如此,所以保存的是一个训练不足的版本

      此外,默认的训练好像是只有在完成时才会保存参数,没有找到设置多少epoch自动保存的设置,这个有待研究

    • 输入尺寸有问题:理论上图片的输入应该是什么尺寸都可以的,但是根据这篇博文的讨论,yolo的效果在输入图片和它配置文件(指cfg/yolo3.cfg)中的尺寸一致时候效果最好,而我这里用的数据集各个图片的尺寸都不一样,和配置文件中的尺寸更就不一样了,我猜测这也是在训练时只有小尺寸的检测框能检测到物体,大尺寸的框就不行的原因(训练的时候每次会输出三个值,就是三个yolo输出,采集的不同尺度的结果)。因为目标检测的resize还涉及到label中定位框的坐标变化,比较复杂,我这里就没做,当然要做的话其实也不难,图片和label中的定位框尺寸同比例缩放就好了。

    另外有一点要注意,根据其他博主的文章 (例如https://blog.csdn.net/qq_44166805/article/details/105876028),我们自己在数据集的ImageSet/Main文件夹下的txt文件中是只需要写不含后缀的文件名的,而在模型的如下的配置文件中我们需要写两个txt的路径,这两个文件是由voc_label.py随着各个图片的txt一起生成的,里面是各个图片的全路径。但我因为是第一次用,不熟悉,自己在Main文件夹下生成的txt其实就是全路径的,而我手动修改了voc_label.py的代码,让它输出了一个和我的txt完全相同的文件,当然这两种在使用上没有什么区别,都是可以用的

    classes= 2 							#classes为训练样本集的类别总数
    train  = scripts/train.txt 			#train的路径为训练样本集所在的路径,前面生成的
    valid  = scripts/test.txt			#valid的路径为验证样本集所在的路径,前面生成的
    names = data/safe.names				#names的路径为***.names文件所在的路径 
    backup = backup/	
    

    不管精度怎样,模型起码是通了

  • 相关阅读:
    计算机顶级期刊和会议
    在linux下查看内核版本、gcc版本、操作系统多少位等参数
    GDB调试
    JAVA学习笔记1
    vim下中文乱码问题解决办法
    MATLAB light material lighting
    Matlab2012a第一次安装打不开 查找程序安装类时出错
    vim 安装与运行以及代码的运行
    express 命令汇总
    mongodb 简单命令汇总
  • 原文地址:https://www.cnblogs.com/jiading/p/13745065.html
Copyright © 2011-2022 走看看