zoukankan      html  css  js  c++  java
  • 50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

    目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶、视频监控、工业质检、医疗诊断等场景。
    image
    目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪。

    下面就是我们完整的代码实现(已调试运行):

    import numpy as np
    import cv2
    font = cv2.FONT_HERSHEY_SIMPLEX
    lower_green = np.array([35, 110, 106])  # 绿色范围低阈值
    upper_green = np.array([77, 255, 255])  # 绿色范围高阈值
    lower_red = np.array([0, 127, 128])  # 红色范围低阈值
    upper_red = np.array([10, 255, 255])  # 红色范围高阈值
    #需要更多颜色,可以去百度一下HSV阈值!
    # cap = cv2.VideoCapture('1.mp4')  # 打开视频文件
    cap = cv2.VideoCapture(0)#打开USB摄像头
    if (cap.isOpened()):  # 视频打开成功
        flag = 1
    else:
        flag = 0
    num = 0
    if (flag):
        while (True):
            ret, frame = cap.read()  # 读取一帧
           
            if ret == False:  # 读取帧失败
                break
            hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
            mask_green = cv2.inRange(hsv_img, lower_green, upper_green)  # 根据颜色范围删选
            mask_red = cv2.inRange(hsv_img, lower_red, upper_red) 
     # 根据颜色范围删选
            mask_green = cv2.medianBlur(mask_green, 7)  # 中值滤波
            mask_red = cv2.medianBlur(mask_red, 7)  # 中值滤波
            mask = cv2.bitwise_or(mask_green, mask_red)
            mask_green, contours, hierarchy = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
            mask_red, contours2, hierarchy2 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    
            for cnt in contours:
                (x, y, w, h) = cv2.boundingRect(cnt)
                cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
                cv2.putText(frame, "Green", (x, y - 5), font, 0.7, (0, 255, 0), 2)
    
            for cnt2 in contours2:
                (x2, y2, w2, h2) = cv2.boundingRect(cnt2)
                cv2.rectangle(frame, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 255), 2)
                cv2.putText(frame, "Red", (x2, y2 - 5), font, 0.7, (0, 0, 255), 2)
            num = num + 1
            cv2.imshow("dection", frame)
            cv2.imwrite("imgs/%d.jpg"%num, frame)
            if cv2.waitKey(20) & 0xFF == 27:
                break
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    如图所示,我们将会检测到红色区域

    最终的效果图:


  • 相关阅读:
    luogu P3398 仓鼠找sugar
    关于lca
    luogu P3374 【模板】树状数组 1
    [NOIp2013普及组]车站分级
    [HDU1598]find the most comfortable road
    [NOI2015]程序自动分析
    [USACO08DEC]Secret Message
    [洛谷3375]【模板】KMP字符串匹配
    [ZJOI2010]网络扩容
    [SCOI2007]修车
  • 原文地址:https://www.cnblogs.com/jpld/p/11895697.html
Copyright © 2011-2022 走看看