zoukankan      html  css  js  c++  java
  • Wolsey "强整数规划“ 建模的+Leapms实践——无产能批量问题

    Wolsey "强整数规划“ 建模的+Leapms实践——无产能批量问题

    《整数规划》[1]一书作者L. A. Wolsey对批量问题(Lot-sizing Problem)做了不少“强”整数规划建模[2-5],不是management science就是operations research,大师呀。

    一个“弱”整数规划模型可以通过添加约束使之变“强” (Strong)。由于所添加的约束是线性不等式约束,就是空间上的平面并且把空间分成两半,一半留在可行解空间里,一半排除出可行解空间,于是这种约束就被叫成“割平面”(cutting plane)。

    本帖记录用+Leapms对模型强化过程的实践,几乎是一个可以跟随的教程贴。如果没有+Leapms在手上,用其他建模语言和求解器也一样可以做,不过就是麻烦些。

    本帖是本博客原创,本博客不转贴他人贴(除非今后说明)。

    无产能批量问题(Uncapacited Lot-sizing Problem)

    考虑在未来T个周期的生产-存贮问题,t (t=1,...,T) 周期的产品需求为d[t], 单位生产费用为p[t], 单位存贮费用为h[t], 生产的固定性费用为 f[t]。 要求制定生产t周期的生产量 x[t],使得总费用最少。

    这里的矛盾是:如果生产过于频繁,则要付出更多的固定性费用;如果一次生产过多,则需要付出更多存贮费,且各个周期的生产费用是不同的,应该尽量避免在高生产费用的周期生产。

    各个符号有英文涵义:d[t] -- demand at time t; p[t] -- production cost at time t; h[t] -- holding cost at time t; f[t] - fixed cost at time t。

    假设产能是无限的,即x[t]可以取到所有d[t]的和,因此叫做无产能批量问题。

    这个例子在Wolsey书的223-227页。

    设$s_t$是t时间的库存,Wolse 是这样描述模型的:

    上面的第一行是说要极小化总费用;第二行是约束。熟悉+Leapms的同学知道上面的$x_t$就是x[t]了。

    上面的第二行包括两个约束式,第一个是说阶段t-1的库存加上t阶段的生产等于t阶段的需求加上t阶段的库存,显然符合逻辑。就是这个:

    第二个是说如果在t时间内生产,则0-1变量$y_t$必须是1。这个$y_t$表示t阶段是否有生产,它要在目标里面乘上$f$, 即$fy$。

     对这样的描述写成+Leapms只需要一分钟。但是写之前最好能弄些d,p,h,f的数据,否则是无本之木,没法实践。还好Wolsey给出了数据,在224页第五段:

    但是,Wolsey忘记给 p[t]了!发邮件给他被退回,好像老先生已经退休了。似乎实践要泡汤了。

    不过思考一下没事的,因为p在研究强模型时候并不重要,只不过我们没法精准复现Wolsey的数据了,但是只要能复现模型由弱变强的性质就好。

    首先我们要把“弱”模型写出来,就是这个:

    min sum{t=1,...,T}(h[t]s[t]+f[t]y[t])
    subject to
        s[t-1]+x[t]=d[t]+s[t] | t=1,...,T
        x[t]<=M*y[t]|t=1,...,T
        s[0]=0
    where
        T,M are numbers
        d,h,f are sets
        s[t] is a variable of nonnegative number|t=0,...,T
        x[t] is a variable of nonnegative number|t=1,...,T
        y[t] is a variable of binary|t=1,...,T
    data_relation
        M=sum{t=1,...,T}d[t]
    data
        T=6 //阶段数
        d={6 7 4 6 3 8}//需求
        h={1 1 3 1 1 2}//单位存贮费用
        f={8 12 8 6 10 23} //时间t内的生产固定费用

    用+Leapms松弛求解一下:

    +Leapms>solve
    The LP is solved to optimal.
    找到线性规划最优解.非零变量值和最优目标值如下:
        .........
        x1*=6
        x2*=7
        x3*=4
        x4*=6
        x5*=3
        x6*=8
        y1*=0.176471
        y2*=0.205882
        y3*=0.117647
        y4*=0.176471
        y5*=0.0882353
        y6*=0.235294
        .........
        Objective*=12.1765
        .........
    +Leapms>

    6个y[t]都不是整数,大体跟Wolsey的图示一致:

    加割平面让模型变强(Strong)

    加第1个割平面,原文这样写

    加进来的+Leapms这样写:

    x[t]<=d[t]y[t]+s[t]|t=1,...,T  //割平面1

    加第2个割平面,原文这样写

    照抄写成+Leapms: 

    s[t]>=d[t](1-y[t])|t=1,...,T //割平面2

    用+Leapms求解怪怪的!分析。。。分析。。。分析。。。

    原来Wolsey写错了,正确的应该是:

    重新写成+Leapms:

    s[t-1]>=d[t](1-y[t])|t=1,...,T //割2

    加了上面两个割平面,用+Leapms松弛求解一下看:

    +Leapms>solve
    The LP is solved to optimal.
    找到线性规划最优解.非零变量值和最优目标值如下:
        .........
        s1*=5.96296
        s2*=4
        s4*=2.22581
        s5*=8
        x1*=11.963
        x2*=5.03704
        x4*=8.22581
        x5*=8.77419
        y1*=1
        y2*=0.148148
        y4*=1
        y5*=0.258065
        .........
        Objective*=38.5472
        .........
    +Leapms>

    可以看见,只剩下两个0-1变量 y2和y5不是整数了。看一下Wolsey的结果:

    分析。。。分析。。。分析, 大体一致!

    下面Wolsey还有另外两个割,他们看起来差不多,仔细看还是大不一样啊:

    什么?这样的割也能写成+Leapms吗?

    必须的!写出来是这样的:

        s[k-1]>=(sum{t=k,...,l}d[t])(1-sum{i=k,...,l}y[i]) | k=1,...,T;l=1,...,T;k<=l//割平面3
        s[k-1]>=sum{t=k,...,l}(d[t](1-sum{i=k,...,l}y[i])) | k=1,...,T;l=1,...,T;k<=l//割平面4

    所有割都加完了,用+Leapms求解其松弛求一下吧:

    +Leapms>solve
    The LP is solved to optimal.
    找到线性规划最优解.非零变量值和最优目标值如下:
        .........
        s1*=6.30249
        s2*=2.69039
        s5*=8
        x1*=12.3025
        x2*=3.3879
        x3*=1.30961
        x4*=6
        x5*=11
        y1*=1
        y2*=0.0996441
        y3*=0.327402
        y4*=1
        y5*=1
        .........
        Objective*=44.8078
        .........
    +Leapms>

    模型确实强了不少,而且与Wolsey画出的结果大体一致:

    好了,实践做完了。

    强模型PDF摘录

    所谓强模型pdf摘录就是+Leapms自动附加生成的一个pdf文档,包含了+Leapms格式的模型和数学概念模型:

     

     其他

    问:+Leapms只能求松弛解吗?

    答:当然不是。用solve命令得出的是松弛解,用mip呼叫+Leapms自身求解器得出的是整数解,用cplex命令则呼叫cplex生成整数解,用grb命令。。。。

    问:上面PDF中的数学公式是+Leapms自动生成的吗?

    答:当然是。

    问:+Leapms能生成MPS模型吗?

    答:当然能,用savemps命令就行。

    问:+Leapms能生成lp格式模型吗?

    答:当然能,用savelp命令就行。

    问:那么能否让+Leapms生成其他建模语言模型?

    答:当然能,很神奇。

    附录1:+Leapms生成的lp模型

    ==================================
    Problem UncapacitatedLotSizingStrong
    .lp file gnerated by +Leapms
    ==================================
    Minimize 
     Obj: s1+s2+3s3+s4+s5+2s6+8y1+12y2+8y3+6y4+10y5+23y6 
    Subject to
     C1: s0-s1+x1=6
     C2: s1-s2+x2=7
     C3: s2-s3+x3=4
     C4: s3-s4+x4=6
     C5: s4-s5+x5=3
     C6: s5-s6+x6=8
     C7: x1-34y1<=-0
     C8: x2-34y2<=-0
     C9: x3-34y3<=-0
     C10: x4-34y4<=-0
     C11: x5-34y5<=-0
     C12: x6-34y6<=-0
     C13: s0=-0
     C14: -s1+x1-6y1<=-0
     C15: -s2+x2-7y2<=-0
     C16: -s3+x3-4y3<=-0
     C17: -s4+x4-6y4<=-0
     C18: -s5+x5-3y5<=-0
     C19: -s6+x6-8y6<=-0
     C20: s0+6y1>=6
     C21: s1+7y2>=7
     C22: s2+4y3>=4
     C23: s3+6y4>=6
     C24: s4+3y5>=3
     C25: s5+8y6>=8
     C26: s0+6y1>=6
     C27: s0+13y1+13y2>=13
     C28: s0+17y1+17y2+17y3>=17
     C29: s0+23y1+23y2+23y3+23y4>=23
     C30: s0+26y1+26y2+26y3+26y4+26y5>=26
     C31: s0+34y1+34y2+34y3+34y4+34y5+34y6>=34
     C32: s1+7y2>=7
     C33: s1+11y2+11y3>=11
     C34: s1+17y2+17y3+17y4>=17
     C35: s1+20y2+20y3+20y4+20y5>=20
     C36: s1+28y2+28y3+28y4+28y5+28y6>=28
     C37: s2+4y3>=4
     C38: s2+10y3+10y4>=10
     C39: s2+13y3+13y4+13y5>=13
     C40: s2+21y3+21y4+21y5+21y6>=21
     C41: s3+6y4>=6
     C42: s3+9y4+9y5>=9
     C43: s3+17y4+17y5+17y6>=17
     C44: s4+3y5>=3
     C45: s4+11y5+11y6>=11
     C46: s5+8y6>=8
     C47: s0+6y1>=6
     C48: s0+13y1+13y2>=13
     C49: s0+17y1+17y2+17y3>=17
     C50: s0+23y1+23y2+23y3+23y4>=23
     C51: s0+26y1+26y2+26y3+26y4+26y5>=26
     C52: s0+34y1+34y2+34y3+34y4+34y5+34y6>=34
     C53: s1+7y2>=7
     C54: s1+11y2+11y3>=11
     C55: s1+17y2+17y3+17y4>=17
     C56: s1+20y2+20y3+20y4+20y5>=20
     C57: s1+28y2+28y3+28y4+28y5+28y6>=28
     C58: s2+4y3>=4
     C59: s2+10y3+10y4>=10
     C60: s2+13y3+13y4+13y5>=13
     C61: s2+21y3+21y4+21y5+21y6>=21
     C62: s3+6y4>=6
     C63: s3+9y4+9y5>=9
     C64: s3+17y4+17y5+17y6>=17
     C65: s4+3y5>=3
     C66: s4+11y5+11y6>=11
     C67: s5+8y6>=8
    Binaries
      y1
      y2
      y3
      y4
      y5
      y6
    
    End
    ==================================
    

      

    附录2 MPS模型

    MPS是机器交换模型,不是给人看的。供参考。

    *MPS FILE GENERATED FROM +LEAPMS
    NAME          UncapacitatedLotSizingStrong
    ROWS
     N   OBJCT
     E   C1
     E   C2
     E   C3
     E   C4
     E   C5
     E   C6
     L   C7
     L   C8
     L   C9
     L   C10
     L   C11
     L   C12
     E   C13
     L   C14
     L   C15
     L   C16
     L   C17
     L   C18
     L   C19
     G   C20
     G   C21
     G   C22
     G   C23
     G   C24
     G   C25
     G   C26
     G   C27
     G   C28
     G   C29
     G   C30
     G   C31
     G   C32
     G   C33
     G   C34
     G   C35
     G   C36
     G   C37
     G   C38
     G   C39
     G   C40
     G   C41
     G   C42
     G   C43
     G   C44
     G   C45
     G   C46
     G   C47
     G   C48
     G   C49
     G   C50
     G   C51
     G   C52
     G   C53
     G   C54
     G   C55
     G   C56
     G   C57
     G   C58
     G   C59
     G   C60
     G   C61
     G   C62
     G   C63
     G   C64
     G   C65
     G   C66
     G   C67
    COLUMNS
        s0        OBJCT           0.0000   C1              1.0000
        s0        C13             1.0000   C20             1.0000
        s0        C26             1.0000   C27             1.0000
        s0        C28             1.0000   C29             1.0000
        s0        C30             1.0000   C31             1.0000
        s0        C47             1.0000   C48             1.0000
        s0        C49             1.0000   C50             1.0000
        s0        C51             1.0000   C52             1.0000
        s1        OBJCT           1.0000   C1             -1.0000
        s1        C2              1.0000   C14            -1.0000
        s1        C21             1.0000   C32             1.0000
        s1        C33             1.0000   C34             1.0000
        s1        C35             1.0000   C36             1.0000
        s1        C53             1.0000   C54             1.0000
        s1        C55             1.0000   C56             1.0000
        s1        C57             1.0000   
        s2        OBJCT           1.0000   C2             -1.0000
        s2        C3              1.0000   C15            -1.0000
        s2        C22             1.0000   C37             1.0000
        s2        C38             1.0000   C39             1.0000
        s2        C40             1.0000   C58             1.0000
        s2        C59             1.0000   C60             1.0000
        s2        C61             1.0000   
        s3        OBJCT           3.0000   C3             -1.0000
        s3        C4              1.0000   C16            -1.0000
        s3        C23             1.0000   C41             1.0000
        s3        C42             1.0000   C43             1.0000
        s3        C62             1.0000   C63             1.0000
        s3        C64             1.0000   
        s4        OBJCT           1.0000   C4             -1.0000
        s4        C5              1.0000   C17            -1.0000
        s4        C24             1.0000   C44             1.0000
        s4        C45             1.0000   C65             1.0000
        s4        C66             1.0000   
        s5        OBJCT           1.0000   C5             -1.0000
        s5        C6              1.0000   C18            -1.0000
        s5        C25             1.0000   C46             1.0000
        s5        C67             1.0000   
        s6        OBJCT           2.0000   C6             -1.0000
        s6        C19            -1.0000   
        x1        OBJCT           0.0000   C1              1.0000
        x1        C7              1.0000   C14             1.0000
        x2        OBJCT           0.0000   C2              1.0000
        x2        C8              1.0000   C15             1.0000
        x3        OBJCT           0.0000   C3              1.0000
        x3        C9              1.0000   C16             1.0000
        x4        OBJCT           0.0000   C4              1.0000
        x4        C10             1.0000   C17             1.0000
        x5        OBJCT           0.0000   C5              1.0000
        x5        C11             1.0000   C18             1.0000
        x6        OBJCT           0.0000   C6              1.0000
        x6        C12             1.0000   C19             1.0000
        MARK0001  'MARKER'                 'INTORG'
        y1        OBJCT           8.0000   C7            -34.0000
        y1        C14            -6.0000   C20             6.0000
        y1        C26             6.0000   C27            13.0000
        y1        C28            17.0000   C29            23.0000
        y1        C30            26.0000   C31            34.0000
        y1        C47             6.0000   C48            13.0000
        y1        C49            17.0000   C50            23.0000
        y1        C51            26.0000   C52            34.0000
        y2        OBJCT          12.0000   C8            -34.0000
        y2        C15            -7.0000   C21             7.0000
        y2        C27            13.0000   C28            17.0000
        y2        C29            23.0000   C30            26.0000
        y2        C31            34.0000   C32             7.0000
        y2        C33            11.0000   C34            17.0000
        y2        C35            20.0000   C36            28.0000
        y2        C48            13.0000   C49            17.0000
        y2        C50            23.0000   C51            26.0000
        y2        C52            34.0000   C53             7.0000
        y2        C54            11.0000   C55            17.0000
        y2        C56            20.0000   C57            28.0000
        y3        OBJCT           8.0000   C9            -34.0000
        y3        C16            -4.0000   C22             4.0000
        y3        C28            17.0000   C29            23.0000
        y3        C30            26.0000   C31            34.0000
        y3        C33            11.0000   C34            17.0000
        y3        C35            20.0000   C36            28.0000
        y3        C37             4.0000   C38            10.0000
        y3        C39            13.0000   C40            21.0000
        y3        C49            17.0000   C50            23.0000
        y3        C51            26.0000   C52            34.0000
        y3        C54            11.0000   C55            17.0000
        y3        C56            20.0000   C57            28.0000
        y3        C58             4.0000   C59            10.0000
        y3        C60            13.0000   C61            21.0000
        y4        OBJCT           6.0000   C10           -34.0000
        y4        C17            -6.0000   C23             6.0000
        y4        C29            23.0000   C30            26.0000
        y4        C31            34.0000   C34            17.0000
        y4        C35            20.0000   C36            28.0000
        y4        C38            10.0000   C39            13.0000
        y4        C40            21.0000   C41             6.0000
        y4        C42             9.0000   C43            17.0000
        y4        C50            23.0000   C51            26.0000
        y4        C52            34.0000   C55            17.0000
        y4        C56            20.0000   C57            28.0000
        y4        C59            10.0000   C60            13.0000
        y4        C61            21.0000   C62             6.0000
        y4        C63             9.0000   C64            17.0000
        y5        OBJCT          10.0000   C11           -34.0000
        y5        C18            -3.0000   C24             3.0000
        y5        C30            26.0000   C31            34.0000
        y5        C35            20.0000   C36            28.0000
        y5        C39            13.0000   C40            21.0000
        y5        C42             9.0000   C43            17.0000
        y5        C44             3.0000   C45            11.0000
        y5        C51            26.0000   C52            34.0000
        y5        C56            20.0000   C57            28.0000
        y5        C60            13.0000   C61            21.0000
        y5        C63             9.0000   C64            17.0000
        y5        C65             3.0000   C66            11.0000
        y6        OBJCT          23.0000   C12           -34.0000
        y6        C19            -8.0000   C25             8.0000
        y6        C31            34.0000   C36            28.0000
        y6        C40            21.0000   C43            17.0000
        y6        C45            11.0000   C46             8.0000
        y6        C52            34.0000   C57            28.0000
        y6        C61            21.0000   C64            17.0000
        y6        C66            11.0000   C67             8.0000
    RHS
        RHS1      C1              6.0000   C2              7.0000
        RHS1      C3              4.0000   C4              6.0000
        RHS1      C5              3.0000   C6              8.0000
        RHS1      C20             6.0000   C21             7.0000
        RHS1      C22             4.0000   C23             6.0000
        RHS1      C24             3.0000   C25             8.0000
        RHS1      C26             6.0000   C27            13.0000
        RHS1      C28            17.0000   C29            23.0000
        RHS1      C30            26.0000   C31            34.0000
        RHS1      C32             7.0000   C33            11.0000
        RHS1      C34            17.0000   C35            20.0000
        RHS1      C36            28.0000   C37             4.0000
        RHS1      C38            10.0000   C39            13.0000
        RHS1      C40            21.0000   C41             6.0000
        RHS1      C42             9.0000   C43            17.0000
        RHS1      C44             3.0000   C45            11.0000
        RHS1      C46             8.0000   C47             6.0000
        RHS1      C48            13.0000   C49            17.0000
        RHS1      C50            23.0000   C51            26.0000
        RHS1      C52            34.0000   C53             7.0000
        RHS1      C54            11.0000   C55            17.0000
        RHS1      C56            20.0000   C57            28.0000
        RHS1      C58             4.0000   C59            10.0000
        RHS1      C60            13.0000   C61            21.0000
        RHS1      C62             6.0000   C63             9.0000
        RHS1      C64            17.0000   C65             3.0000
        RHS1      C66            11.0000   C67             8.0000
    BOUNDS
     FR BND       s0
     FR BND       s1
     FR BND       s2
     FR BND       s3
     FR BND       s4
     FR BND       s5
     FR BND       s6
     FR BND       x1
     FR BND       x2
     FR BND       x3
     FR BND       x4
     FR BND       x5
     FR BND       x6
     UP BND       y1         1
     UP BND       y2         1
     UP BND       y3         1
     UP BND       y4         1
     UP BND       y5         1
     UP BND       y6         1
    
    ENDATA

    附录3 整数规划解

    +Leapms>mip
    relexed_solution=44.8078; number_of_nodes_branched=0; memindex=(1,2)
    The Problem is solved to optimal as an MIP.
    找到整数规划的最优解.非零变量值和最优目标值如下:
      .........
        s1* =11
        s2* =4
        s5* =8
        x1* =17
        x4* =6
        x5* =11
        y1* =1
        y4* =1
        y5* =1
      .........
        Objective*=47
      .........
    +Leapms>

    参考文献

    [1] Wolsey L A. Integer Programming. New York: Jonh Wiley & Sons, 1998 / ISBN 978-0-471-28366-9

    [2] Barany I. Strong Formulations for Multi-Item Capacitated Lot Sizing[J]. Management Science, 1984, 30(30):1255-1261.

    [3] Wolsey L A. Uncapacitated Lot-Sizing Problems with Start-Up Costs[J]. Operations Research, 1989, 37(5):741-747.

    [4] Belvaux G, Wolsey L A. bc-prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems[J]. Management Science, 2000, 46(5):724-738.

    [5] Wolsey L A. Erratum: A tight formulation for uncapacitated lot-sizing with stock upper bounds[J]. Mathematical Programming, 2017, 161(1-2):1-7.

     

  • 相关阅读:
    Minimum configuration for openldap to proxy multiple AD into a single search base
    排列组合算法(PHP)
    Make Notepad++ auto close HTML/XML tags after the slash(the Dreamweaver way)
    PHP, LDAPS and Apache
    【day1】tensorflow版本问题及初步使用
    tflearn save模型异常
    布隆过滤器(Bloom Filter)
    初识Spark(Spark系列)
    Hadoop实践
    install postgis(2.0) on ubuntu(12.04)
  • 原文地址:https://www.cnblogs.com/leapms/p/10251177.html
Copyright © 2011-2022 走看看