证明:由于${A^2} = A$,且$rleft( A ight) = r$,则存在可逆阵$P$,使得
[{P^{ - 1}}AP = left( {egin{array}{*{20}{c}}
{{E_r}}&{}\
{}&0
end{array}}
ight)]
即${P^{ - 1}}AP = left( {egin{array}{*{20}{c}}
{{E_r}}&{}\
{}&0
end{array}}
ight)$,令$B = Pleft( {egin{array}{*{20}{c}}
{{0_r}}&{}&{}\
{}&J&{}\
{}&{}&0
end{array}}
ight){P^{ - 1}}$,则命题得证
其中$J$为$s$阶若当块,对角线全为$0$
$f注:$若$A$的零化多项式无重根,则$A$可相似对角化