zoukankan      html  css  js  c++  java
  • [LeetCode 315] Count of Smaller Numbers After Self

    You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].

     

    Example 1:

    Input: nums = [5,2,6,1]
    Output: [2,1,1,0]
    Explanation:
    To the right of 5 there are 2 smaller elements (2 and 1).
    To the right of 2 there is only 1 smaller element (1).
    To the right of 6 there is 1 smaller element (1).
    To the right of 1 there is 0 smaller element.
    

    Example 2:

    Input: nums = [-1]
    Output: [0]
    

    Example 3:

    Input: nums = [-1,-1]
    Output: [0,0]
    

     

    Constraints:

    • 1 <= nums.length <= 10^5
    • -10^4 <= nums[i] <= 10^4

    Brute force solution takes O(N^2) time.

    Solution 1. Count smaller numbers during merge sort, O(N * logN)

    In merge sort, when we are doing the merge for subarray [L, R], each time we pick a number A[i] from the left half, we can check how many numbers from the right half have been picked. This count is the number of smaller values of A[i] on its right side. After the merging for [L, R] is done, it is in sorted order, which means when we merge even larger subarrays, [L,R] will be on the same side, either left half or right half but not both. This way we'll never double count. So for A[i], we can first save its index information for the purpose of updating the final count. Then do a merge sort on A, the total number of right half numbers that get picked before A[i] is its answer.

    class Pair {
        int v;
        int idx;
        Pair(int v, int idx) {
            this.v = v;
            this.idx = idx;
        }
    }
    class Solution {
        private Integer[] ans;
        public List<Integer> countSmaller(int[] nums) {
            ans = new Integer[nums.length];
            Arrays.fill(ans, 0);
            Pair[] pairs = convertToPairs(nums);
            mergeSort(pairs, new Pair[nums.length], 0, nums.length - 1);
            return Arrays.asList(ans);
        }
        private Pair[] convertToPairs(int[] nums) {
            Pair[] pairs = new Pair[nums.length];
            for(int i = 0; i < nums.length; i++) {
                pairs[i] = new Pair(nums[i], i);
            }
            return pairs;
        }
        private void mergeSort(Pair[] pairs, Pair[] aux, int left, int right) {
            if(left < right) {
                int mid = left + (right - left) / 2;
                mergeSort(pairs, aux, left, mid);
                mergeSort(pairs, aux, mid + 1, right);
                for(int i = left; i <= right; i++) {
                    aux[i] = pairs[i];
                }
                int j = left, k = mid + 1;
                for(int i = left; i <= right; i++) {
                    if(j <= mid && k <= right) {
                        if(aux[j].v <= aux[k].v) {
                            pairs[i] = aux[j];
                            ans[aux[j].idx] += (k - mid - 1);
                            j++;
                        }
                        else {
                            pairs[i] = aux[k];
                            k++;
                        }
                    }
                    else if(j <= mid) {
                        pairs[i] = aux[j];
                        ans[aux[j].idx] += (k - mid - 1);
                        j++;
                    }
                    else {
                        pairs[i] = aux[k];
                        k++;
                    }
                }
            }
        }
    }

    Solution 2. Binary Indexed Tree, O(N * log(maxV))

    Create a binary indexed tree that covers the full range of all possible nums[i] values. Here let's shift the entire array by 10^4 + 1 so the minimum value is 1. 

    Then starting from right to left, do a sum range query on all smaller values than nums[i], this is the answer for nums[i]. Then update frequency count at key nums[i] + 10001.

    class BinaryIndexedTree {
        int[] ft;
        BinaryIndexedTree(int n) {
            ft = new int[n];
        }
        void update(int k, int v) {
            for(; k < ft.length; k += (k & (-k))) {
                ft[k] += v;
            }
        }
        int rangeSumQuery(int r) {
            int sum = 0;
            for(; r > 0; r -= (r & (-r))) {
                sum += ft[r];
            }
            return sum;
        }
    }
    class Solution {
        public List<Integer> countSmaller(int[] nums) {
            BinaryIndexedTree bit = new BinaryIndexedTree(20002);
            List<Integer> ans = new ArrayList<>();
            for(int i = nums.length - 1; i >= 0; i--) {
                ans.add(bit.rangeSumQuery(nums[i] + 10001 - 1));
                bit.update(nums[i] + 10001, 1);
            }
            Collections.reverse(ans);
            return ans;
        }
    }

    Solution 3. Segment Tree, O(N * logN), same idea with binary indexed tree.

    class SegmentTree {
        SegmentTree lChild, rChild;
        int leftMost, rightMost, sum;
        
        SegmentTree(int[] a, int leftMost, int rightMost) {
            this.leftMost = leftMost;
            this.rightMost = rightMost;
            if(leftMost == rightMost) sum = a[leftMost];
            else {
                int mid = leftMost + (rightMost - leftMost) / 2;
                lChild = new SegmentTree(a, leftMost, mid);
                rChild = new SegmentTree(a, mid + 1, rightMost);
                recalc();    
            }
        }
        
        void recalc() {
            if(leftMost != rightMost) {
                sum = lChild.sum + rChild.sum;
            }
        }
        
        void update(int idx, int v) {
            if(leftMost == rightMost) {
                sum += v;
                return;
            }
            if(idx <= lChild.rightMost) lChild.update(idx, v);
            else rChild.update(idx, v);
            recalc();
        }
        
        int rangeSum(int l, int r) {
            if(l > rightMost || r < leftMost) return 0;
            else if(l <= leftMost && r >= rightMost) return sum;
            return lChild.rangeSum(l, r) + rChild.rangeSum(l, r);
        }
    }
    class Solution {
        public List<Integer> countSmaller(int[] nums) {
            List<Integer> ans = new ArrayList<>();
            int[] a = new int[20002];
            SegmentTree st = new SegmentTree(a, 0, a.length - 1);
            for(int i = nums.length - 1; i >= 0; i--) {
                ans.add(st.rangeSum(0, nums[i] + 10001 - 1));
                st.update(nums[i] + 10001, 1);
            }
            Collections.reverse(ans);
            return ans;
        }
    }

    Related Problems

    [LeetCode 493] Reverse Pairs

  • 相关阅读:
    Python 时间类型及其互相转换
    SQLAlchemy技术手册
    Flask与微信小程序登录(后端)
    使用Docker搭建MySQL服务
    开发中常见的正则表达式
    关于CSRF 和 csrftoken
    Flask-migrate基本使用方法
    MySql查询进阶
    常见Http访问错误小结
    git简易操作手册
  • 原文地址:https://www.cnblogs.com/lz87/p/14410386.html
Copyright © 2011-2022 走看看