zoukankan      html  css  js  c++  java
  • POJ 1743 Musical Theme(后缀数组)

    Description

    A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the range 1..88, each representing a key on the piano. It is unfortunate but true that this representation of melodies ignores the notion of musical timing; but, this programming task is about notes and not timings. 
    Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it: 
    • is at least five notes long 
    • appears (potentially transposed -- see below) again somewhere else in the piece of music 
    • is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)

    Transposed means that a constant positive or negative value is added to every note value in the theme subsequence. 
    Given a melody, compute the length (number of notes) of the longest theme. 
    One second time limit for this problem's solutions! 

    Input

    The input contains several test cases. The first line of each test case contains the integer N. The following n integers represent the sequence of notes. 
    The last test case is followed by one zero. 

    Output

    For each test case, the output file should contain a single line with a single integer that represents the length of the longest theme. If there are no themes, output 0.

    题目大意:给N个数字,对着N个数字前后作差得到一段N-1个数字的序列,问重复出现两次且不重叠的子段最长有多长。(看清楚上面的题目噢)

    思路:N个数字作差,得到N-1个数字的序列,求后缀数组,二分验证是否存在mid长度的符合要求的字符串。

    代码(219MS):

     1 #include <cstdio>
     2 #include <algorithm>
     3 #include <iostream>
     4 #include <cstring>
     5 using namespace std;
     6 
     7 const int MAXN = 20010;
     8 int s[MAXN];
     9 int n, sa[MAXN], height[MAXN], rank[MAXN], tmp[MAXN], c[MAXN];
    10 
    11 void makesa(int m) {
    12     memset(c, 0, sizeof(c));
    13     for(int i = 0; i < n; ++i) ++c[rank[i] = s[i]];
    14     for(int i = 0; i < m; ++i) c[i] += c[i - 1];
    15     for(int i = 0; i < n; ++i) sa[--c[rank[i]]] = i;
    16     for(int k = 1; k < n; k <<= 1) {
    17         for(int i = 0; i < n; ++i) {
    18             int j = sa[i] - k;
    19             if(j < 0) j += n;
    20             tmp[c[rank[j]]++] = j;
    21         }
    22         int j = c[0] = sa[tmp[0]] = 0;
    23         for(int i = 1; i < n; ++i) {
    24             if(rank[tmp[i]] != rank[tmp[i - 1]] || rank[tmp[i] + k] != rank[tmp[i - 1] + k])
    25                 c[++j] = i;
    26             sa[tmp[i]] = j;
    27         }
    28         memcpy(rank, sa, n * sizeof(int));
    29         memcpy(sa, tmp, n * sizeof(int));
    30         if(j >= n - 1) break;
    31     }
    32 }
    33 
    34 void calheight() {
    35     int j, k = 0;
    36     for(int i = 0; i < n; height[rank[i++]] = k) {
    37         if(k > 0) --k;
    38         for(j = sa[rank[i] - 1]; s[i + k] == s[j + k]; ++k);
    39     }
    40 }
    41 
    42 bool check(int k) {
    43     int mx = sa[0], mn = sa[0];
    44     for(int i = 1; i < n; ++i) {
    45         if(height[i] >= k - 1) {
    46             mx = max(mx, sa[i]);
    47             mn = min(mn, sa[i]);
    48         } else {
    49             if(mx - mn >= k) return true;
    50             mx = mn = sa[i];
    51         }
    52     }
    53     return mx - mn >= k;
    54 }
    55 
    56 int solve() {
    57     int l = 1, r = n;
    58     while(l < r) {
    59         int mid = (l + r) >> 1;
    60         if(check(mid)) l = mid + 1;
    61         else r = mid;
    62     }
    63     return l - 1;
    64 }
    65 
    66 int main() {
    67     while(scanf("%d", &n) != EOF && n) {
    68         for(int i = 0; i < n; ++i) scanf("%d", &s[i]);
    69         for(int i = 0; i < n - 1; ++i) s[i] = s[i + 1] - s[i] + 88;
    70         s[n - 1] = 0;
    71         makesa(176);
    72         if(n != 1) calheight();
    73         int ans = solve();
    74         printf("%d
    ", ans >= 5 ? ans : 0);
    75     }
    76 }
    View Code
  • 相关阅读:
    2016.7.22.noip2012D2
    2016.7.21.noip2014D2
    LIS最长上升子序列O(n^2)与O(nlogn)的算法
    vijos1910解方程
    vijos1909寻找道路
    viojs1908无线网路发射器选址
    P1907飞扬的小鸟
    P1906联合权值
    P1905生活大爆炸版 石头剪刀布
    poj1274(匈牙利算法)
  • 原文地址:https://www.cnblogs.com/oyking/p/3535183.html
Copyright © 2011-2022 走看看