Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
题解:题目要求的是S中有多少不同的字串与T相同。
用DP求解。建立二维数组dp[i][j]表示S(0,i-1)有多少不同的字串与T(0,j-1)相同。则:
- 当T为空串时,S必然有字串和T匹配,所以dp[i][0] = 1;
- 当S为空串时,若T不为空串,则S任意字串必然不同于T,所以dp[0][i] = 0(i != 0);
- 当S和T都为空串的时候,匹配,所以dp[0][0] = 1;
- 其他情况dp[i][j] = dp[i-1][j] + (S[i-1] == T[j-1]? dp[i-1][j-1] : 0);
第4中情况理解如下:
如上图所示,不管T[i]是否等于s[j],S[0,i-1]中和T[0,j]相同的字串一定包含在S[0,i]中,所以dp[i][j] 至少为 dp[i-1][j];
而如果s[i] = T[j],那么在S[0,i-1]中包含的T[0,j-1]加上T[j],就是S[0,i]中等于的T[0,j]的字串,所以如果s[j] = T[i],dp[i][j] = dp[i-1][j] + dp[i-1][j-1];
代码如下:
1 public class Solution { 2 public int numDistinct(String S, String T) { 3 if(S == null || T == null) 4 return 0; 5 int m = S.length(); 6 int n = T.length(); 7 int[][] dp = new int[m+1][n+1]; 8 9 dp[0][0] = 1; 10 for(int i = 1;i <= m;i++) 11 dp[i][0] = 1; 12 13 for(int i= 1;i<=m;i++){ 14 for(int j = 1;j <= n;j++){ 15 dp[i][j] = dp[i-1][j]; 16 dp[i][j] += S.charAt(i-1) == T.charAt(j-1)?dp[i-1][j-1]:0; 17 } 18 } 19 20 return dp[m][n]; 21 } 22 }