zoukankan      html  css  js  c++  java
  • windows编译MaskRCNN


    1.代码修改为3.0语言版本


    2.setup_windows.py 文件内容为

    #!/usr/bin/env python
    
    import numpy as np
    import os
    # on Windows, we need the original PATH without Anaconda's compiler in it:
    PATH = os.environ.get('PATH') + ';C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin'
    from distutils.spawn import spawn, find_executable
    from setuptools import setup, find_packages, Extension
    from setuptools.command.build_ext import build_ext
    import sys
    
    # CUDA specific config
    # nvcc is assumed to be in user's PATH
    nvcc_compile_args = ['-O', '--ptxas-options=-v', '-arch=sm_35', '-c', '--compiler-options=-fPIC']
    nvcc_compile_args = os.environ.get('NVCCFLAGS', '').split() + nvcc_compile_args
    cuda_libs = ['cublas']
    nvcc_bin = 'nvcc.exe'
    lib_dir = 'lib/x64'
    
    import distutils.msvc9compiler
    distutils.msvc9compiler.VERSION = 14.0
    
    # Obtain the numpy include directory.  This logic works across numpy versions.
    try:
        numpy_include = np.get_include()
    except AttributeError:
        numpy_include = np.get_numpy_include()
    
    
    cudamat_ext = Extension('D:/Works/PyProj/Eric6/pyMaskrcnnMX/rcnn/mask/gpu_mv', ['D:/Works/PyProj/Eric6/pyMaskrcnnMX/rcnn/mask/gpu_mv.cu'],
                            language='c++',
                            libraries=cuda_libs,
                            extra_compile_args=nvcc_compile_args,
                            include_dirs=[numpy_include, 'C:\Programming\CUDA\v8.0\include'])
    
    class CUDA_build_ext(build_ext):
        """
        Custom build_ext command that compiles CUDA files.
        Note that all extension source files will be processed with this compiler.
        """
        def build_extensions(self):
            self.compiler.src_extensions.append('.cu')
            self.compiler.set_executable('compiler_so', 'nvcc')
            self.compiler.set_executable('linker_so', 'nvcc --shared')
            if hasattr(self.compiler, '_c_extensions'):
                self.compiler._c_extensions.append('.cu')  # needed for Windows
            self.compiler.spawn = self.spawn
            build_ext.build_extensions(self)
    
        def spawn(self, cmd, search_path=1, verbose=0, dry_run=0):
            """
            Perform any CUDA specific customizations before actually launching
            compile/link etc. commands.
            """
            if (sys.platform == 'darwin' and len(cmd) >= 2 and cmd[0] == 'nvcc' and
                    cmd[1] == '--shared' and cmd.count('-arch') > 0):
                # Versions of distutils on OSX earlier than 2.7.9 inject
                # '-arch x86_64' which we need to strip while using nvcc for
                # linking
                while True:
                    try:
                        index = cmd.index('-arch')
                        del cmd[index:index+2]
                    except ValueError:
                        break
            elif self.compiler.compiler_type == 'msvc':
                cmd[:1] = ['nvcc', '--compiler-bindir',
                           os.path.dirname(find_executable("cl.exe", PATH))
                           or cmd[0]]
                # - Secondly, we fix a bunch of command line arguments.
                for idx, c in enumerate(cmd):
                    # create .dll instead of .pyd files
                    #if '.pyd' in c: cmd[idx] = c = c.replace('.pyd', '.dll')  #20160601, by MrX
                    # replace /c by -c
                    if c == '/c': cmd[idx] = '-c'
                    # replace /DLL by --shared
                    elif c == '/DLL': cmd[idx] = '--shared'
                    # remove --compiler-options=-fPIC
                    elif '-fPIC' in c: del cmd[idx]
                    # replace /Tc... by ...
                    elif c.startswith('/Tc'): cmd[idx] = c[3:]
                    # replace /Fo... by -o ...
                    elif c.startswith('/Fo'): cmd[idx:idx+1] = ['-o', c[3:]]
                    # replace /LIBPATH:... by -L...
                    elif c.startswith('/LIBPATH:'): cmd[idx] = '-L' + c[9:]
                    # replace /OUT:... by -o ...
                    elif c.startswith('/OUT:'): cmd[idx:idx+1] = ['-o', c[5:]]
                    # remove /EXPORT:initlibcudamat or /EXPORT:initlibcudalearn
                    elif c.startswith('/EXPORT:'): del cmd[idx]
                    # replace cublas.lib by -lcublas
                    elif c == 'cublas.lib': cmd[idx] = '-lcublas'
                # - Finally, we pass on all arguments starting with a '/' to the
                #   compiler or linker, and have nvcc handle all other arguments
                if '--shared' in cmd:
                    pass_on = '--linker-options='
                    # we only need MSVCRT for a .dll, remove CMT if it sneaks in:
                    cmd.append('/NODEFAULTLIB:libcmt.lib')
                else:
                    pass_on = '--compiler-options='
                cmd = ([c for c in cmd if c[0] != '/'] +
                       [pass_on + ','.join(c for c in cmd if c[0] == '/')])
                # For the future: Apart from the wrongly set PATH by Anaconda, it
                # would suffice to run the following for compilation on Windows:
                # nvcc -c -O -o <file>.obj <file>.cu
                # And the following for linking:
                # nvcc --shared -o <file>.dll <file1>.obj <file2>.obj -lcublas
                # This could be done by a NVCCCompiler class for all platforms.
            spawn(cmd, search_path, verbose, dry_run)
    
    setup(name="mask_voting_gpu",
          description="Performs linear algebra computation on the GPU via CUDA",
          ext_modules=[cudamat_ext],
          cmdclass={'build_ext': CUDA_build_ext},
    )
    

    出现错误:

    LINK : fatal error LNK1181: 无法打开输入文件“ID=2.obj”

    解决方法:




  • 相关阅读:
    程序员编程武器大盘点
    Opencv 视频转为图像序列
    C/C++ 浮点数比较问题
    C/C++ Swap without using extra variable
    C/C++ Quick Sort Algorithm
    LaTeX 插图片
    LaTeX 基本的公式符号命令
    天龙八部服务器端共享内存的设计(1/3)
    天龙八部服务器端共享内存的设计(2/3)
    天龙八部服务器端共享内存的设计(2/3)
  • 原文地址:https://www.cnblogs.com/wishchin/p/9199891.html
Copyright © 2011-2022 走看看