zoukankan      html  css  js  c++  java
  • [codeforces934D]A Determined Cleanup

    [codeforces934D]A Determined Cleanup

    试题描述

    In order to put away old things and welcome a fresh new year, a thorough cleaning of the house is a must.

    Little Tommy finds an old polynomial and cleaned it up by taking it modulo another. But now he regrets doing this...

    Given two integers (p) and (k), find a polynomial (f(x)) with non-negative integer coefficients strictly less than (k), whose remainder is (p) when divided by ((x + k)). That is, (f(x) = q(x) cdot (x + k) + p), where (q(x)) is a polynomial (not necessarily with integer coefficients).

    给定两个整数 (p)(k),构造一个满足下列条件的多项式 (f(x))

    • 每项系数严格小于 (k) 且非负;
    • (f(x) = g(x) cdot (x+k) + p),其中 (g(x)) 是个多项式,系数没有任何要求。

    输入

    The only line of input contains two space-separated integers (p) and (k) ((1 le p le 10^{18}, 2 le k le 2 000)).

    输出

    If the polynomial does not exist, print a single integer (-1), or output two lines otherwise.

    In the first line print a non-negative integer (d) — the number of coefficients in the polynomial.

    In the second line print d space-separated integers (a_0, a_1, cdots , a_{d - 1}), describing a polynomial fulfilling the given requirements. Your output should satisfy (0 le a_i < k) for all (0 le i le d - 1), and (a_{d - 1}  e 0).

    If there are many possible solutions, print any of them.

    输入示例1

    46 2
    

    输出示例1

    7
    0 1 0 0 1 1 1
    

    输入示例2

    2018 214
    

    输出示例2

    3
    92 205 1
    

    数据规模及约定

    见“输入

    题解

    我们假设 (f(x) = sum_{i=0}^d a_i x^i),然后做一下 (frac{f(x)}{(x+k)}) 的大除法,并将得到的 (g(x)) 的系数写出来(假设 (g(x) = sum_{i=0}^{d-1} b_i x^i)),会发现如下规律:

    [b_{d-1} = a_d \ b_{d-2} = a_{d-1} - k a_d \ b_{d-3} = a_{d-2} - k a_{d-1} + k^2 a_d \ cdots \ b_0 = a_1 - k a_2 + k^2 a_3 - cdots \ p = a_0 - k a_1 + k^2 a_2 - cdots = sum_{i=0}^d (-k)^i a_i ]

    于是发现 ((a_0a_1a_2 cdots)_{-k}) 就是 (p)(-k) 进制表示,上面的过程证明了它是 (p)(-k) 进制表示是满足题目要求的必要条件;由于 (g(x)) 没有任何约束,即 (b_i) 可以是任意实数,充分性也显然。

    负进制的转化也是同样的过程,只不过除法要做到严格的向下取整,而不是用 C++ 中默认的朝零取整。

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    #define rep(i, s, t) for(int i = (s), mi = (t); i <= mi; i++)
    #define dwn(i, s, t) for(int i = (s), mi = (t); i >= mi; i--)
    #define LL long long
    
    LL read() {
    	LL x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    	return x * f;
    }
    
    #define maxn 65
    
    int cnt, A[maxn];
    
    int main() {
    	LL p = read(), k = read();
    	
    	while(p) {
    		LL div = p / -k;
    		if(-k * div > p) div++;
    		A[cnt++] = p - (-k * div);
    		p = div;
    	}
    	
    	printf("%d
    ", cnt);
    	rep(i, 0, cnt - 1) printf("%d%c", A[i], i < cnt - 1 ? ' ' : '
    ');
    	
    	return 0;
    }
    
  • 相关阅读:
    tensor的维度变换
    交叉熵损失函数
    全连接层、softmax的loss
    SoftMax函数
    pytorch实现mnist识别实战
    pytorch索引与切片
    Pytorch中的torch.gather函数
    softmax函数
    Separate to Adapt Open Set Domain Adaptation via Progressive Separation论文总结
    Separate to Adapt: Open Set Domain Adaptation via Progressive Separation论文笔记
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/8453548.html
Copyright © 2011-2022 走看看