zoukankan      html  css  js  c++  java
  • Transactional topologies —— 事务拓扑

    事务拓扑是怎么回事?

    Storm guarantees that every message will be played through the topology at least once.

    Storm has a feature called transactional topologies that let you achieve exactly-once messaging semantics for most computations.

      事务拓扑,保证流入拓扑的数据能够被完整的处理且处理一次

      Acker拓扑,保证流入拓扑的数据能够被完整的处理,但不保证不重复

      普通拓扑,不保证流入拓扑的数据能够被完整的处理;

     

    引入前言

      Storm是一个分布式的流处理系统,利用anchor和ack机制保证所有tuple都被成功处理。如果tuple出错,则可以被重传,但是如何保证出错的tuple只被处理一次呢?Storm提供了一套事务性组件Transaction Topology,用来解决这个问题。

      Transactional Topology目前已经不再维护,由Trident来实现事务性topology,但是原理相同。

    1 一致性事务的设计

      Storm如何实现即对tuple并行处理,又保证事务性。本节从简单的事务性实现方法入手,逐步引出Transactional Topology的原理。

    1.1 简单设计一:强顺序流

      保证tuple只被处理一次,最简单的方法就是将tuple流变成强顺序的,并且每次只处理一个tuple。从1开始,给每个tuple都顺序加上一个id。在处理tuple的时候,将处理成功的tuple id和计算结果存在数据库中。下一个tuple到来的时候,将其id与数据库中的id做比较。如果相同,则说明这个tuple已经被成功处理过了,忽略它;如果不同,根据强顺序性,说明这个tuple没有被处理过,将它的id及计算结果更新到数据库中。

      以统计消息总数为例。每来一个tuple,如果数据库中存储的id 与当前tuple id不同,则数据库中的消息总数加1,同时更新数据库中的当前tuple id值。如图:

    强顺序流

      但是这种机制使得系统一次只能处理一个tuple,无法实现分布式计算

    1.2 简单设计二:强顺序batch流

      为了实现分布式,我们可以每次处理一批tuple,称为一个batch。一个batch中的tuple可以被并行处理。

      我们要保证一个batch只被处理一次,机制和上一节类似。只不过数据库中存储的是batch id。batch的中间计算结果先存在局部变量中,当一个batch中的所有tuple都被处理完之后,判断batch id,如果跟数据库中的id不同,则将中间计算结果更新到数据库中。

      如何确保一个batch里面的所有tuple都被处理完了呢?可以利用Storm提供的CoordinateBolt。如图:

    顺序batches

      但是强顺序batch流也有局限,每次只能处理一个batch,batch之间无法并行。要想实现真正的分布式事务处理,可以使用storm提供的Transactional Topology。在此之前,我们先详细介绍一下CoordinateBolt的原理。

    1.3 CoordinateBolt原理

    CoordinateBolt具体原理如下:

    • 真正执行计算的bolt外面封装了一个CoordinateBolt。真正执行任务的bolt我们称为real bolt。
    • 每个CoordinateBolt记录两个值:有哪些task给我发送了tuple(根据topology的grouping信息);我要给哪些tuple发送信息(同样根据groping信息)
    •  Real bolt发出一个tuple后,其外层的CoordinateBolt会记录下这个tuple发送给哪个task了。
    • 等所有的tuple都发送完了之后,CoordinateBolt通过另外一个特殊的stream以emitDirect的方式告诉所有它发送过tuple的task,它发送了多少tuple给这个task。下游task会将这个数字和自己已经接收到的tuple数量做对比,如果相等,则说明处理完了所有的tuple。
    • 下游CoordinateBolt会重复上面的步骤,通知其下游。

    整个过程如图所示:

    coordinateBolt

    CoordinateBolt主要用于两个场景:

    • DRPC
    • Transactional Topology

      CoordinatedBolt对于业务是有侵入的,要使用CoordinatedBolt提供的功能,你必须要保证你的每个bolt发送的每个tuple的第一个field是request-id。 所谓的“我已经处理完我的上游”的意思是说当前这个bolt对于当前这个request-id所需要做的工作做完了。这个request-id在DRPC里面代表一个DRPC请求;在Transactional Topology里面代表一个batch。

    1.4 Trasactional Topology

      Storm提供的Transactional Topology将batch计算分为process和commit两个阶段。Process阶段可以同时处理多个batch,不用保证顺序性;commit阶段保证batch的强顺序性,并且一次只能处理一个batch,第1个batch成功提交之前,第2个batch不能被提交。

      还是以统计消息总数为例,以下代码来自storm-starter里面的TransactionalGlobalCount。

    1 MemoryTransactionalSpout spout = new MemoryTransactionalSpout(DATA,new Fields(“word“), PARTITION_TAKE_PER_BATCH);
    2 
    3 TransactionalTopologyBuilder builder = new TransactionalTopologyBuilder(“global-count“, “spout“, spout, 3);
    4 
    5 builder.setBolt(“partial-count“, new BatchCount(), 5).noneGrouping(“spout“);
    6 
    7 builder.setBolt(“sum“, new UpdateGlobalCount()).globalGrouping(“partial-count“);

     TransactionalTopologyBuilder共接收四个参数。

    • 这个Transactional Topology的id。Id用来在Zookeeper中保存当前topology的进度,如果这个topology重启,可以继续之前的进度执行。
    •  Spout在这个topology中的id
    • 一个TransactionalSpout。一个Trasactional Topology中只能有一个TrasactionalSpout.在本例中是一个MemoryTransactionalSpout,从一个内存变量(DATA)中读取数据。
    • TransactionalSpout的并行度(可选)。

    下面是BatchCount的定义:

     1 public static class BatchCount extends BaseBatchBolt {
     2 
     3         Object _id;
     4 
     5         BatchOutputCollector _collector;
     6 
     7         int _count = 0;
     8 
     9         @Override
    10 
    11         public void prepare(Map conf, TopologyContext context,
    12 
    13               BatchOutputCollector collector, Object id) {
    14 
    15             _collector = collector;
    16 
    17             _id = id;
    18 
    19         }
    20 
    21         @Override
    22 
    23         public void execute(Tuple tuple) {
    24 
    25             _count++;
    26 
    27         }
    28 
    29         @Override
    30 
    31         public void finishBatch() {
    32 
    33             _collector.emit(new Values(_id, _count));
    34 
    35         }
    36 
    37         @Override
    38 
    39         public void declareOutputFields(OutputFieldsDeclarer declarer) {
    40 
    41             declarer.declare(new Fields(“id“, “count“));
    42 
    43         }
    44 
    45 }

      BatchCount的prepare方法的最后一个参数是batch id,在Transactional Tolpoloyg里面这id是一个TransactionAttempt对象。

      Transactional Topology里发送的tuple都必须以TransactionAttempt作为第一个field,storm根据这个field来判断tuple属于哪一个batch。

      TransactionAttempt包含两个值:一个transaction id,一个attempt id。transaction id的作用就是我们上面介绍的对于每个batch中的tuple是唯一的,而且不管这个batch replay多少次都是一样的。attempt id是对于每个batch唯一的一个id, 但是对于同一个batch,它replay之后的attempt id跟replay之前就不一样了, 我们可以把attempt id理解成replay-times, storm利用这个id来区别一个batch发射的tuple的不同版本。

      execute方法会为batch里面的每个tuple执行一次,你应该把这个batch里面的计算状态保持在一个本地变量里面。对于这个例子来说, 它在execute方法里面递增tuple的个数。

      最后, 当这个bolt接收到某个batch的所有的tuple之后, finishBatch方法会被调用。这个例子里面的BatchCount类会在这个时候发射它的局部数量到它的输出流里面去。

    下面是UpdateGlobalCount类的定义:

     1 public static class UpdateGlobalCount extends BaseTransactionalBolt
     2 
     3 implements ICommitter {
     4 
     5         TransactionAttempt _attempt;
     6 
     7         BatchOutputCollector _collector;
     8 
     9         int _sum = 0;
    10 
    11         @Override
    12 
    13         public void prepare(Map conf, TopologyContext context,
    14 
    15 BatchOutputCollector collector, TransactionAttempt attempt) {
    16 
    17             _collector = collector;
    18 
    19             _attempt = attempt;
    20 
    21         }
    22 
    23         @Override
    24 
    25         public void execute(Tuple tuple) {
    26 
    27             _sum+=tuple.getInteger(1);
    28 
    29         }
    30 
    31         @Override
    32 
    33         public void finishBatch() {
    34 
    35             Value val = DATABASE.get(GLOBAL_COUNT_KEY);
    36 
    37             Value newval;
    38 
    39             if(val == null || !val.txid.equals(_attempt.getTransactionId())) {
    40 
    41                 newval = new Value();
    42 
    43                 newval.txid = _attempt.getTransactionId();
    44 
    45                 if(val==null) {
    46 
    47                     newval.count = _sum;
    48 
    49                 } else {
    50 
    51                     newval.count = _sum + val.count;
    52 
    53                 }
    54 
    55                 DATABASE.put(GLOBAL_COUNT_KEY, newval);
    56 
    57             } else {
    58 
    59                 newval = val;
    60 
    61             }
    62 
    63             _collector.emit(new Values(_attempt, newval.count));
    64 
    65         }
    66 
    67         @Override
    68 
    69         public void declareOutputFields(OutputFieldsDeclarer declarer) {
    70 
    71             declarer.declare(new Fields(“id“, “sum“));
    72 
    73         }
    74 
    75 } 

      UpdateGlobalCount实现了ICommitter接口,所以storm只会在commit阶段执行finishBatch方法。而execute方法可以在任何阶段完成。

      在UpdateGlobalCount的finishBatch方法中,将当前的transaction id与数据库中存储的id做比较。如果相同,则忽略这个batch;如果不同,则把这个batch的计算结果加到总结果中,并更新数据库。

    Transactional Topolgy运行示意图如下:

    transactional topology

    下面总结一下Transactional Topology的一些特性:

    •  Transactional Topology将事务性机制都封装好了,其内部使用CoordinateBolt来保证一个batch中的tuple被处理完。
    •  TransactionalSpout只能有一个,它将所有tuple分为一个一个的batch,而且保证同一个batch的transaction id始终一样。
    •  BatchBolt处理batch在一起的tuples。对于每一个tuple调用execute方法,而在整个batch处理完成的时候调用finishBatch方法。
    •  如果BatchBolt被标记成Committer,则只能在commit阶段调用finishBolt方法。一个batch的commit阶段由storm保证只在前一个batch成功提交之后才会执行。并且它会重试直到topology里面的所有bolt在commit完成提交。
    •  Transactional Topology隐藏了anchor/ack框架,它提供一个不同的机制来fail一个batch,从而使得这个batch被replay。

    5.2 Trident介绍

      Trident是Storm之上的高级抽象,提供了joins,grouping,aggregations,fuctions和filters等接口。如果你使用过Pig或Cascading,对这些接口就不会陌生。

      Trident将stream中的tuples分成batches进行处理,API封装了对这些batches的处理过程,保证tuple只被处理一次。处理batches中间结果存储在TridentState对象中。

      Trident事务性原理这里不详细介绍,有兴趣的读者请自行查阅资料。

    参考:

    http://xumingming.sinaapp.com/736/twitter-storm-transactional-topolgoy/

    http://xumingming.sinaapp.com/811/twitter-storm-code-analysis-coordinated-bolt/

    https://github.com/nathanmarz/storm/wiki/Trident-tutorial

     

    参考链接:

    Storm官方文档:Transactional Topologies

    徐明明博客:Twitter Storm: Transactional Topolgoy简介

  • 相关阅读:
    使用SQL Server Management Studio操作replication时,要用机器名登录,不要用IP地址
    SQL Server Replication 总结
    SQL Server 全文索引的硬伤(转载)
    Sqlserver2008及以上使用全文索引排除干扰词 (转载)
    如何恢复VS2013代码实时校验功能
    [VS2013]如何闪开安装VS2013必须要有安装IE10的限制
    C# ASP.NET Webservice调用外部exe无效的解决方法
    nstallShield制作打包程序详解(图)
    VS报错之混合模式程序集是针对“v1.1.4322”版的运行时生成的,在没有配置其他信息的情况下,无法在 4.0 运行时中加载该程序集。
    Android之悬浮窗口实现(WindowManager)
  • 原文地址:https://www.cnblogs.com/xymqx/p/4366945.html
Copyright © 2011-2022 走看看