zoukankan      html  css  js  c++  java
  • Joseph

    Description

    The Joseph's problem is notoriously known. For those who are not familiar with the original problem: from among n people, numbered 1, 2, . . ., n, standing in circle every mth is going to be executed and only the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the last remaining person, thus saving his life to give us the message about the incident. For example when n = 6 and m = 5 then the people will be executed in the order 5, 4, 6, 2, 3 and 1 will be saved. 

    Suppose that there are k good guys and k bad guys. In the circle the first k are good guys and the last k bad guys. You have to determine such minimal m that all the bad guys will be executed before the first good guy. 

    Input

    The input file consists of separate lines containing k. The last line in the input file contains 0. You can suppose that 0 < k < 14.

    Output

    The output file will consist of separate lines containing m corresponding to k in the input file.

    Sample Input

    3
    4
    0
    

    Sample Output

    5
    30
    

    题意:约瑟夫环的变形。

    先说约翰夫环,即n个人围成一圈报数,报到数的人离开,问最后离开的那人的编号

    数学公式:

    s = 0;
    for(int i = 2; i <= n; i++){
         s = (s + m )%i;
    }
    printf("%d", s + 1);

    链表实现:

    输出的s就是最后的编号(根据n改变改变),即从零个数开始逆推上去原来的编号,不是推出的人,是编号的转变。

    本题是前n个好人后n个坏人,要算出的是坏人的编号,即推出的人的编号,所以是%len开始

    #include<cstdio>
    #include<cstring>
    using namespace std;
    bool check(int n,int m)
    {
        int len = 2*n;
        int s = 1;
        for(int i = 1; i <= n ; i++){
                 s = (s + m - 1)%len;
                 if(s == 0) s = len;
                 len--;
                 if(s <= n) return false;
                 if(s > len) s = 1;
        }
        return true;
    }
    int main(){
        int a[100];
        int n,m;
        for( n = 1; n < 14;n++){
                for( m = n+1;;m++){
                        if(check(n,m)){
                            a[n] = m;
                            break;
                        }
                }
        }
        while(~scanf("%d",&n)&&n){
                printf("%d
    ",a[n]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    将smarty安装到MVC架构中
    MVC开发模式以及Smarty模板引擎的使用
    LAMP环境搭建+配置虚拟域名
    第四节 块标签、含样式的标签
    第三节 p标签
    第二节 标题标签
    第一节 简单的html
    第十一节 python和集群交互
    第十节 redis集群搭建
    第九节 搭建主从服务
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4314171.html
Copyright © 2011-2022 走看看