zoukankan      html  css  js  c++  java
  • 利用python进行数据分析之绘图和可视化

    matplotlib API入门

     使用matplotlib的办法最常用的方式是pylab的ipython,pylab模式还会向ipython引入一大堆模块和函数提供一种更接近与matlab的界面,matplotlib API函数位于matplotlib.pyplot模块中,其通常的引入约定是:import matplot.pyplot as plt

    1、Figure和Subplot

    matplotlib的图像都位于Figure对象中,你可以用plt.figure创建一个新的Figure,不能通过空Figure绘图,必须用add_subplot创建一个或多个sub_plot才行

    >>> import matplotlib.pyplot as plt
    >>> fig=plt.figure()
    >>> ax1=fig.add_subplot(2,2,1)
    >>> ax2=fig.add_subplot(2,2,2)

     你可以在matplotlib的文档中找到各种图表类型,由于根据特定布局创建Figure和subplot是一件常见的任务,于是便出现一个更为方便的方法:plt.subplots,它可以创建一个新的Figure,且返回一个含有已创建的subplot对象的numpy数组。

    pandas中的绘图函数

    1、线型图

    Series和DataFrame都有一个用于生成各类图标的plot方法,默认情况下,他们所生成的是线型图,该Series的索引会被传给matplotlib,并用于绘制x轴

     
    >>> from pandas import *
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> s=Series(np.random.randn(10).cumsum(),index=np.arange(0,100,10))
    >>> s.plot()
    >>> plt.show(s.plot())
     

    DataFrame的plot方法会在一个subplot中为各列绘制一条直线,并自动创建图例:

    >>> df=DataFrame(np.random.randn(10,4).cumsum(0),columns=['A','B','C','D'],index=np.arange(0,100,10))
    >>> plt.show(df.plot())

    2、柱状图

    在生成的线型图的代码中加上kind='bar'(垂直树状图)或 kind='barch'(水平柱状图)即可生成柱状图,此时,Series和DataFrame的索引将会被用作X或Y的刻度。

    data=Series(np.random.rand(16),index=list('abcdefghijklmnop'))
    >>> data.plot(kind='bar',ax=axes[0],color='k',alpha=0.7)
    <matplotlib.axes._subplots.AxesSubplot object at 0x06FA9FD0>
    >>> data.plot(kind='bar',ax=axes[1],color='k',alpha=0.7)
    <matplotlib.axes._subplots.AxesSubplot object at 0x049D02D0>

    对于DataFrame,柱状图会将每一行的值分为一组

     
    >>> df=DataFrame(np.random.rand(6,4),index=['one','two','three','four','five','six'],columns=['A','B','C','D'])
    >>> df.columns.name='Genus'
    >>> df
    Genus         A         B         C         D
    one    0.610197  0.132144  0.919492  0.432829
    two    0.493323  0.899049  0.438195  0.300159
    three  0.305448  0.404252  0.374776  0.924542
    four   0.982561  0.233063  0.135196  0.385672
    five   0.613274  0.574884  0.684504  0.123448
    six    0.791576  0.062249  0.597673  0.058899
    >>> plt.show(df.plot(kind='bar'))
     

    3、直方图和密度图

     直方图是一种可以对值频率进行离散化显示的柱状图,另一种是密度图,它是通过计算可能会产生观测数据的连续概率分布的估计而产生的。一般过程是将该分布近似为一组核分布,因此,密度图也被称作KDE图,调用plt时加上kind='kde'即可生成一张密度图。

    4、散布图

    散布图是观察两个一维数据序列之间的关系的有效手段,matplotlib的scatter方法是绘制散布图的主要方法。

     
    >>> from pandas import *
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> macro=read_csv(r'D:书籍与代码资料利用python进行数据分析代码和数据集ch08macrodata.csv')
    >>> data=macro[['cpi','m1','tbilrate','unemp']]
    >>> trans_data=np.log(data).diff().dropna()
    >>> trans_data[-5:]
              cpi        m1  tbilrate     unemp
    198 -0.007904  0.045361 -0.396881  0.105361
    199 -0.021979  0.066753 -2.277267  0.139762
    200  0.002340  0.010286  0.606136  0.160343
    201  0.008419  0.037461 -0.200671  0.127339
    202  0.008894  0.012202 -0.405465  0.042560
    >>> plt.scatter(trans_data['m1'],trans_data['unemp'])
    <matplotlib.collections.PathCollection object at 0x0525C6D0>
    >>> plt.show()
     

     在探索式的数据分析中,同时观察一组变量的散布图是很有意义的,这也被称为散布矩阵;pandas提供了一个能从DataFrame创建散布图矩阵的scatter_matrix函数。

    Python图形化工具生态系统介绍

    Chaco:适合用复杂的图形化方法表达数据的内部关系,对交互支持较多与适合

    mayayi:基于C++图形库的图形工具包

  • 相关阅读:
    自定义事件类LoadEvent
    Sound
    (this.stage.getChildAt(0) as MovieClip).arr[1]
    menu菜单栏
    排列图片,自动换行
    滚动条
    滚动条使用示例
    载入类 举例
    舞台和主时间轴的关系
    自定义载入类(如图片、XML)
  • 原文地址:https://www.cnblogs.com/zknublx/p/6371123.html
Copyright © 2011-2022 走看看