zoukankan      html  css  js  c++  java
  • 【2020五校联考NOIP #6】最佳观影

    题意:
    给出一个 (k imes k) 的网格和 (n) 次操作。其中 (k) 为奇数。
    每次操作给出一个数 (m)。每次你要找出一个三元组 ((x,l,r)) 使得:

    1. (r-l+1=m)
    2. ((x,l),(x,l+1),(x,l+2),dots,(x,r)) 都未被访问过。
    3. (sumlimits_{i=l}^r|x-frac{k+1}{2}|+|y-frac{k+1}{2}|) 最小。换句话说,((x,l),(x,l+1),(x,l+2),dots,(x,r)) 到网格正中心的距离之和最小
    4. 在满足 1,2,3 的条件下,若有多个三元组,选择 (x) 最小的,若还有多种,选择 (l) 最小的。
      求出 ((x,l,r)) 之后,你会将 ((x,l),(x,l+1),(x,l+2),dots,(x,r)) 都设为访问过。
      (k in [1,300001])

    神仙题 %%%%%(看调试语句就知道我这道题调了多久了)
    我们记 (mid=frac{k+1}{2})
    首先有一个显而易见的性质:对于那些没有位置被选择的行,只有最接近 (mid) 的两行才会被选。
    也就是说,有位置被选择的行一定会组成一个区间。
    我们对这两行进行特判。假设目前有位置被选择的行组成的区间为 ((cl,cr)),那么选择第 (cl) 行的最小代价为 (|mid-cl| imes m+sumlimits_{i=1}^{lfloorfrac{m}{2} floor}i+sumlimits_{i=1}^{lfloorfrac{m-1}{2} floor}i),第 (cr) 行的代价也同理。
    如果我们选择一个有位置被选择的行,那么显然这一行最中心的位置被选择了。
    我们将这一行一分为二,分为左右两部分。这里以左半部分为例,右半部分也同理。
    假设第 (i) 行左半部分最右边的空位为 (x),如果 (x<m) 就不能选择这一行。
    如果 (xgeq m),那么可以选择这一行,并且代价最小的区间一定是 ((x-m+1,x)),考虑如何计算这一行的代价。
    我们将这个长度为 (m) 的区间的右端点与 ((mid,mid)) 对齐,此时代价为 (frac{m(m-1)}{2})
    然后从 ((mid,mid)) 移动到 ((i,x)),不难发现每移一步代价增加 (m),即 (m imes (|i-mid|+|x-mid|)+frac{m(m-1)}{2})
    由于 (m) 是一个确定的值,代价最小就意味着 ((|i-mid|+|x-mid|))
    我们建立一个结构体 (data),里面存三个值 (v,x,l),并重载小于号使其与上面的比较方式相吻合。
    维护一棵线段树,线段树上的节点存该子树中最小的 (data)。叶子节点为 (data) 的大根堆。
    线段树的下标表示 (x),也就是第 (i) 行左半部分最右侧的空位的位置。
    我们要查询 ([m,mid]) 中最小的三元组,就在 ([m,mid]) 对应的区间中查找。
    如果我们选择一个区间 ((x,l,r)),就从线段树中删除 ((|mid-x|+|mid-r|,x,r)) 并加入 ((|mid-x|+|mid-l+1|,x,l-1)) 即可。

    #include <bits/stdc++.h>
    using namespace std;
    #define fi			first
    #define se			second
    #define pb			push_back
    #define fz(i,a,b)	for(int i=a;i<=b;i++)
    #define fd(i,a,b)	for(int i=a;i>=b;i--)
    #define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
    #define all(a)		a.begin(),a.end()
    #define fill0(a)	memset(a,0,sizeof(a))
    #define fill1(a)	memset(a,-1,sizeof(a))
    #define fillbig(a)	memset(a,0x3f,sizeof(a))
    #define y1			y1010101010101
    #define y0			y0101010101010
    typedef pair<int,int> pii;
    typedef long long ll;
    int n,k,mid;
    struct data{
    	ll v;int x,l;
    	data(ll _v=0,int _x=0,int _l=0){
    		v=_v;x=_x;l=_l;
    	}
    	friend bool operator <(data a,data b){
    		if(a.v^b.v) return a.v<b.v;
    		if(a.x^b.x) return a.x<b.x;
    		return a.l<b.l;
    	}
    	friend bool operator >(data a,data b){
    		return b<a;
    	}
    	friend bool operator ==(data a,data b){
    		return (a.v==b.v&&a.x==b.x&&a.l==b.l);
    	}
    };
    const data INF=data(0x3f3f3f3f3f3f3f3fll,0x3f3f3f3f,0x3f3f3f3f);
    struct segtree{
    	struct node{
    		int l,r;
    		data mn;
    	} s[300005<<2];
    	priority_queue<data,vector<data>,greater<data> > pq[300005];
    	inline void build(int k,int l,int r){
    		s[k].l=l;s[k].r=r;s[k].mn=INF;if(l==r) return;
    		int mid=(l+r)>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);
    	}
    	inline void modify(int k,int ind,data p){
    //		printf("%d
    ",k);
    //		if(!ind) return;
    		if(s[k].l==s[k].r){
    //			printf("%d
    ",s[k].l);
    			pq[s[k].l].push(p);
    			s[k].mn=pq[s[k].l].top();
    			return;
    		}
    		int mid=(s[k].l+s[k].r)>>1;
    		if(ind<=mid) modify(k<<1,ind,p);
    		else modify(k<<1|1,ind,p);
    		s[k].mn=min(s[k<<1].mn,s[k<<1|1].mn);
    	}
    	inline void del(int k,int ind){
    		if(!ind) return;
    //		printf("%d
    ",k);
    		if(s[k].l==s[k].r){
    //			printf("%d
    ",s[k].l);
    //			data xx=pq[s[k].l].top();
    //			printf("delete %d %d %d
    ",xx.v,xx.x,xx.l);
    //			assert(!pq[s[k].l].empty());
    			pq[s[k].l].pop();
    			if(pq[s[k].l].empty()) s[k].mn=INF;
    			else s[k].mn=pq[s[k].l].top();
    			return;
    		}
    		int mid=(s[k].l+s[k].r)>>1;
    		if(ind<=mid) del(k<<1,ind);
    		else del(k<<1|1,ind);
    		s[k].mn=min(s[k<<1].mn,s[k<<1|1].mn);
    	}
    	inline data query(int k,int l,int r){
    //		printf("%d
    ",k);
    		if(l>r) return INF;
    		if(l<=s[k].l&&s[k].r<=r) return s[k].mn;
    		int mid=(s[k].l+s[k].r)>>1;
    		if(r<=mid) return query(k<<1,l,r);
    		else if(l>mid) return query(k<<1|1,l,r);
    		else return min(query(k<<1,l,mid),query(k<<1|1,mid+1,r));
    	}
    } L,R;
    int main(){
    	scanf("%d%d",&n,&k);mid=(k+1)>>1;
    	int cl=mid,cr=mid;L.build(1,0,mid);R.build(1,0,mid);
    	for(int i=1;i<=n;i++){
    		int m;scanf("%d",&m);
    		data ansp=INF;
    		ll v=1ll*(m/2)*((m/2)+1)/2+1ll*((m-1)/2)*((m-1)/2+1)/2;
    		if(cl!=0) ansp=min(ansp,data(v+1ll*m*abs(mid-cl),cl,mid-m/2));
    		if(cr!=k+1) ansp=min(ansp,data(v+1ll*m*abs(mid-cr),cr,mid-m/2));
    		data x=L.query(1,m,mid),y=R.query(1,m,mid);x.l-=m-1;
    //		printf("%lld %d %d
    ",x.v,x.x,x.l);
    //		printf("%lld %d %d
    ",y.v,y.x,y.l);
    		if(x.v!=0x3f3f3f3f3f3f3f3fll) x.v=x.v*m+1ll*m*(m-1)/2;
    		if(y.v!=0x3f3f3f3f3f3f3f3fll) y.v=y.v*m+1ll*m*(m-1)/2;
    		ansp=min(ansp,x);ansp=min(ansp,y);
    		if(ansp.v==0x3f3f3f3f3f3f3f3fll){puts("-1");continue;}
    //		printf("%lld %d %d
    ",x.v,x.x,x.l);
    //		printf("%lld %d %d
    ",y.v,y.x,y.l);
    		printf("%d %d %d
    ",ansp.x,ansp.l,ansp.l+m-1);
    		if(ansp.x==cl){
    			L.modify(1,ansp.l-1,data(abs(cl-mid)+abs(ansp.l-1-mid),cl,ansp.l-1));
    //			printf("L %d %d %d %d
    ",ansp.l-1,abs(cl-mid)+abs(ansp.l-1-mid),cl,ansp.l-1);
    			R.modify(1,k-ansp.l-m+1,data(abs(cl-mid)+abs(ansp.l+m-mid),cl,ansp.l+m));
    //			printf("R %d %d %d %d
    ",k-ansp.l-m+1,abs(cl-mid)+abs(ansp.l+m-mid),cl,ansp.l+m);
    			if(cl==cr) cr++;cl--;
    			continue;
    		}
    		else if(ansp.x==cr){
    			L.modify(1,ansp.l-1,data(abs(cr-mid)+abs(ansp.l-1-mid),cr,ansp.l-1));
    //			printf("L %d %d %d %d
    ",ansp.l-1,abs(cr-mid)+abs(ansp.l-1-mid),cr,ansp.l-1);
    			R.modify(1,k-ansp.l-m+1,data(abs(cr-mid)+abs(ansp.l+m-mid),cr,ansp.l+m));
    //			printf("R %d %d %d %d
    ",k-ansp.l-m+1,abs(cr-mid)+abs(ansp.l+m-mid),cr,ansp.l+m);
    			cr++;
    			continue;
    //			continue;
    		}
    		else if(ansp==x){
    			L.del(1,ansp.l+m-1);
    //			printf("delL %d
    ",ansp.l+m-1);
    			L.modify(1,ansp.l-1,data(abs(ansp.x-mid)+abs(ansp.l-1-mid),ansp.x,ansp.l-1));
    //			printf("L %d %d %d %d
    ",ansp.l-1,abs(ansp.x-mid)+abs(ansp.l-1-mid),ansp.x,ansp.l-1);
    //			continue;
    		}
    		else if(ansp==y){
    			R.del(1,k-ansp.l+1);
    //			printf("delR %d
    ",k-ansp.l+1);
    			R.modify(1,k-(ansp.l+m)+1,data(abs(ansp.x-mid)+abs(ansp.l+m-mid),ansp.x,ansp.l+m));
    //			printf("R %d %d %d %d
    ",k-(ansp.l+m)+1,abs(ansp.x-mid)+abs(ansp.l+m-mid),ansp.x,ansp.l+m);
    //			continue;
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    java学习day08--面向对象--继承+方法重写+static关键字
    java学习day07--面向对象--封装+this关键字+构造器
    java学习day06-面向对象--类和对象
    依赖管理
    NSQ消息队列
    logger包
    time包
    fmt包
    Go_Protobu
    Go_性能优化
  • 原文地址:https://www.cnblogs.com/ET2006/p/13833142.html
Copyright © 2011-2022 走看看