zoukankan      html  css  js  c++  java
  • 五大算法之三贪心算法

    概念:

      在对问题求解时,总是做出当前看来最好的选择,也就是说不从整体考虑,它做出某种意义上的最优解。

      贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

      以下的列子使用贪心算法就不能取到最优解。

    有一个背包,背包容量是M=150kg。有7个物品,物品不可以分割成任意大小。要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
    物品 A B C D E F G
    重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
    价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
    分析:
    目标函数:∑pi最大
    约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
    ⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
    ⑵每次挑选所占重量最小的物品装入是否能得到最优解?
    ⑶每次选取单位重量价值最大的物品,成为解本题的策略。
    值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
    贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
    可惜的是,它需要证明后才能真正运用到题目的算法中。
    一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
    对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
    ⑴贪心策略:选取价值最大者。
    反例:
    W=30
    物品:A B C
    重量:28 12 12
    价值:30 20 20
    根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
    ⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
    ⑶贪心策略:选取单位重量价值最大的物品。
    反例:
    W=30
    物品:A B C
    重量:28 20 10
    价值:28 20 10
    根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
    【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
    对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
    但是,如果题目是如下所示,这个策略就也不行了。
    W=40
    物品:A B C
    重量:25 20 15
    价值:25 20 15
    此问题通过使用贪心算法有后效性,问题条件改变就贪心算法得出的最优解就失效,所有贪心算法无法得到最优解。

    Prim(普里姆算法)最小生成树就是适用的贪心算法。

  • 相关阅读:
    今天愣了半天硬是没想到用map,在此还原以下代码
    blob文件的存储和读取
    C#操作SQLite 报错 (Attempt to write a read-only database)
    Response.Flush()
    搜索
    直接给对方邮箱写邮件
    js
    会员模块(会员注册、会员登录、忘记密码、会员中心)
    标签大全
    网站在线留言
  • 原文地址:https://www.cnblogs.com/cyz110/p/6278121.html
Copyright © 2011-2022 走看看