zoukankan      html  css  js  c++  java
  • 547. Friend Circles

    问题:

    给定一个二维数组,每个元素M[i][j]

    代表i和j是否为朋友:是朋友则为1,否则为0

    求形成了多少个朋友圈。(朋友的朋友,认为在一个朋友圈)

    Example 1:
    Input: 
    [[1,1,0],
     [1,1,0],
     [0,0,1]]
    Output: 2
    Explanation:The 0th and 1st students are direct friends, so they are in a friend circle. 
    The 2nd student himself is in a friend circle. So return 2.
    
    Example 2:
    Input: 
    [[1,1,0],
     [1,1,1],
     [0,1,1]]
    Output: 1
    Explanation:The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends, 
    so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.
    
    Note:
    N is in range [1,200].
    M[i][i] = 1 for all students.
    If M[i][j] = 1, then M[j][i] = 1.

    解法:并查集(Disjoint Set)

    遍历二维数组,i:0~size, j:0~i

    若为1,则merge两个点 i 和 j 

    最后,求parent有多少个root

    遍历parent,其中 i == parent[i] 的,即为顶点root。

    代码参考:

     1 class DisjointSet {
     2 public:
     3     DisjointSet(int n):parent(n), rank(n,0) {
     4         for(int i=0; i<n; i++) {
     5             parent[i] = i;
     6         }
     7     }
     8     int find(int i) {
     9         if(parent[i] != i) {
    10             parent[i] = find(parent[i]);
    11         }
    12         return parent[i];
    13     }
    14     bool merge(int x, int y) {
    15         int x_root = find(x);
    16         int y_root = find(y);
    17         if(x_root == y_root) return false;
    18         if(rank[x_root] < rank[y_root]) {
    19             parent[x_root] = y_root;
    20         } else if(rank[x_root] > rank[y_root]) {
    21             parent[y_root] = x_root;
    22         } else {
    23             parent[x_root] = y_root;
    24             rank[y_root] ++;
    25         }
    26         return true;
    27     }
    28     int getrootsum() {
    29         int sum=0;
    30         for(int i=0; i<parent.size(); i++) {
    31             if(parent[i]==i) sum++;
    32         }
    33         return sum;
    34     }
    35 private:
    36     vector<int> parent;
    37     vector<int> rank;
    38 };
    39 
    40 class Solution {
    41 public:
    42     int findCircleNum(vector<vector<int>>& M) {
    43         DisjointSet DS(M.size());
    44         for(int i=0; i<M.size(); i++) {
    45             for(int j=0; j<i; j++) {
    46                 if(M[i][j]==1) DS.merge(i, j);
    47             }
    48         }
    49         return DS.getrootsum();
    50     }
    51 };
  • 相关阅读:
    UVA 11776
    NEFU 117
    hihocoder 1331
    NEFU 84
    虚拟机类加载机制
    动态规划 -- 01背包问题和完全背包问题
    动态规划 ---- 最长回文子串
    动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)
    动态规划 ---- 最长不下降子序列(Longest Increasing Sequence, LIS)
    动态规划(Dynamic Programming, DP)---- 最大连续子序列和 & 力扣53. 最大子序和
  • 原文地址:https://www.cnblogs.com/habibah-chang/p/13458620.html
Copyright © 2011-2022 走看看