zoukankan      html  css  js  c++  java
  • POJ3525 半平面交

    题意:求某凸多边形内部离边界最远的点到边界的距离

    首先介绍半平面、半平面交的概念:

    半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围。如图所示:

    半平面交:多个半平面的交集。有点类似二元函数的线性规划。如图

    求半平面交:用的kuangbin模板= =

    sol:二分答案

      二分距离值,按这个值把边界向内缩,再求新的半平面交。如图:

    绿色的是原图形,蓝色是按距离值向里面缩进去之后得到的新图形。对这个新图做半平面交即可。

    若半平面交存在,说明与边界的距离是该值的点存在(半平面交里面的点都是)

    那么如何把图形向里面缩呢?其实在纸上画画就容易多了:

    因为半平面是一条有向直线,所以只要有直线上的任意一点和方向就可以了,这个点在不在对应的那条边上都无所谓。

    如图,棕色是一开始的边,黑色是它对应的半平面。

    设当前二分答案值是mid,对这条边做一个长度为mid的法向量(图中绿色)

    棕色边起点+法向量即得到新半平面上的一个点(图中蓝色)

    新半平面的方向和原来一样,直接平移过来就行了。

    在做法向量的时候采用向量的概念能简化问题。这里在kuangbin模板的基础上加上了向量类Vector:

     1 struct Vector:public point
     2 {
     3     Vector(){}
     4     Vector(double a,double b)
     5     {
     6         x=a;    y=b;
     7     }
     8     Vector(point _a,point _b)   //a->b
     9     {
    10         double dx=_b.x-_a.x;
    11         double dy=_b.y-_a.y;
    12         x=dx;   y=dy;
    13     }
    14     Vector(line v)
    15     {
    16         double dx=v.b.x-v.a.x;
    17         double dy=v.b.y-v.a.y;
    18         x=dx;   y=dy;
    19     }
    20     double length()
    21     {
    22         return (sqrt(x*x+y*y));
    23     }
    24     Vector Normal()      //返回this的单位长度的法向量
    25     {
    26         double L=sqrt(x*x+y*y);
    27         Vector Vans=Vector(-y/L,x/L);
    28         return Vans;
    29     }
    30 };
    31     

    重载了三种构造函数:给出向量的坐标值(x,y)、给出向量首尾两点、用一条线段作为向量

    ----------------------------------------------

    AC Code:

      1 #include<vector>
      2 #include<list>
      3 #include<map>
      4 #include<set>
      5 #include<deque>
      6 #include<queue>
      7 #include<stack>
      8 #include<bitset>
      9 #include<algorithm>
     10 #include<functional>
     11 #include<numeric>
     12 #include<utility>
     13 #include<iostream>
     14 #include<sstream>
     15 #include<iomanip>
     16 #include<cstdio>
     17 #include<cmath>
     18 #include<cstdlib>
     19 #include<cctype>
     20 #include<string>
     21 #include<cstring>
     22 #include<cstdio>
     23 #include<cmath>
     24 #include<cstdlib>
     25 #include<ctime>
     26 #include<climits>
     27 #include<complex>
     28 #define mp make_pair
     29 #define pb push_back
     30 using namespace std;
     31 const double eps=1e-6;
     32 const double pi=acos(-1.0);
     33 const double inf=1e20;
     34 const int maxp=1111;
     35 int dblcmp(double d)
     36 {
     37     if (fabs(d)<eps)return 0;
     38     return d>eps?1:-1;
     39 }
     40 inline double sqr(double x){return x*x;}
     41 struct point
     42 {
     43     double x,y;
     44     point(){}
     45     point(double _x,double _y):
     46     x(_x),y(_y){};
     47     void input()
     48     {
     49         scanf("%lf%lf",&x,&y);
     50     }
     51     void output()
     52     {
     53         printf("%.2f %.2f
    ",x,y);
     54     }
     55     bool operator==(point a)const
     56     {
     57         return dblcmp(a.x-x)==0&&dblcmp(a.y-y)==0;
     58     }
     59     bool operator<(point a)const
     60     {
     61         return dblcmp(a.x-x)==0?dblcmp(y-a.y)<0:x<a.x;
     62     }
     63     double len()
     64     {
     65         return hypot(x,y);
     66     }
     67     double len2()
     68     {
     69         return x*x+y*y;
     70     }
     71     double distance(point p)
     72     {
     73         return hypot(x-p.x,y-p.y);
     74     }
     75     point add(point p)
     76     {
     77         return point(x+p.x,y+p.y);
     78     }
     79     point sub(point p)
     80     {
     81         return point(x-p.x,y-p.y);
     82     }
     83     point mul(double b)
     84     {
     85         return point(x*b,y*b);
     86     }
     87     point div(double b)
     88     {
     89         return point(x/b,y/b);
     90     }
     91     double dot(point p)
     92     {
     93         return x*p.x+y*p.y;
     94     }
     95     double det(point p)
     96     {
     97         return x*p.y-y*p.x;
     98     }
     99     double rad(point a,point b)
    100     {
    101         point p=*this;
    102         return fabs(atan2(fabs(a.sub(p).det(b.sub(p))),a.sub(p).dot(b.sub(p))));
    103     }
    104     point trunc(double r)
    105     {
    106         double l=len();
    107         if (!dblcmp(l))return *this;
    108         r/=l;
    109         return point(x*r,y*r);
    110     }
    111     point rotleft()
    112     {
    113         return point(-y,x);
    114     }
    115     point rotright()
    116     {
    117         return point(y,-x);
    118     }
    119     point rotate(point p,double angle)//绕点p逆时针旋转angle角度
    120     {
    121         point v=this->sub(p);
    122         double c=cos(angle),s=sin(angle);
    123         return point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c);
    124     }
    125 };
    126 struct line
    127 {
    128     point a,b;
    129     line(){}
    130     line(point _a,point _b)
    131     {
    132         a=_a;
    133         b=_b;
    134     }
    135     bool operator==(line v)
    136     {
    137         return (a==v.a)&&(b==v.b);
    138     }
    139     //倾斜角angle
    140     line(point p,double angle)
    141     {
    142         a=p;
    143         if (dblcmp(angle-pi/2)==0)
    144         {
    145             b=a.add(point(0,1));
    146         }
    147         else
    148         {
    149             b=a.add(point(1,tan(angle)));
    150         }
    151     }
    152     //ax+by+c=0
    153     line(double _a,double _b,double _c)
    154     {
    155         if (dblcmp(_a)==0)
    156         {
    157             a=point(0,-_c/_b);
    158             b=point(1,-_c/_b);
    159         }
    160         else if (dblcmp(_b)==0)
    161         {
    162             a=point(-_c/_a,0);
    163             b=point(-_c/_a,1);
    164         }
    165         else
    166         {
    167             a=point(0,-_c/_b);
    168             b=point(1,(-_c-_a)/_b);
    169         }
    170     }
    171     void input()
    172     {
    173         a.input();
    174         b.input();
    175     }
    176     void adjust()
    177     {
    178         if (b<a)swap(a,b);
    179     }
    180     double length()
    181     {
    182         return a.distance(b);
    183     }
    184     double angle()//直线倾斜角 0<=angle<180
    185     {
    186         double k=atan2(b.y-a.y,b.x-a.x);
    187         if (dblcmp(k)<0)k+=pi;
    188         if (dblcmp(k-pi)==0)k-=pi;
    189         return k;
    190     }
    191     //点和线段关系
    192     //1 在逆时针
    193     //2 在顺时针
    194     //3 平行
    195     int relation(point p)
    196     {
    197         int c=dblcmp(p.sub(a).det(b.sub(a)));
    198         if (c<0)return 1;
    199         if (c>0)return 2;
    200         return 3;
    201     }
    202     bool pointonseg(point p)
    203     {
    204         return dblcmp(p.sub(a).det(b.sub(a)))==0&&dblcmp(p.sub(a).dot(p.sub(b)))<=0;
    205     }
    206     bool parallel(line v)
    207     {
    208         return dblcmp(b.sub(a).det(v.b.sub(v.a)))==0;
    209     }
    210     //2 规范相交
    211     //1 非规范相交
    212     //0 不相交
    213     int segcrossseg(line v)
    214     {
    215         int d1=dblcmp(b.sub(a).det(v.a.sub(a)));
    216         int d2=dblcmp(b.sub(a).det(v.b.sub(a)));
    217         int d3=dblcmp(v.b.sub(v.a).det(a.sub(v.a)));
    218         int d4=dblcmp(v.b.sub(v.a).det(b.sub(v.a)));
    219         if ((d1^d2)==-2&&(d3^d4)==-2)return 2;
    220         return (d1==0&&dblcmp(v.a.sub(a).dot(v.a.sub(b)))<=0||
    221                 d2==0&&dblcmp(v.b.sub(a).dot(v.b.sub(b)))<=0||
    222                 d3==0&&dblcmp(a.sub(v.a).dot(a.sub(v.b)))<=0||
    223                 d4==0&&dblcmp(b.sub(v.a).dot(b.sub(v.b)))<=0);
    224     }
    225     int linecrossseg(line v)//*this seg v line
    226     {
    227         int d1=dblcmp(b.sub(a).det(v.a.sub(a)));
    228         int d2=dblcmp(b.sub(a).det(v.b.sub(a)));
    229         if ((d1^d2)==-2)return 2;
    230         return (d1==0||d2==0);
    231     }
    232     //0 平行
    233     //1 重合
    234     //2 相交
    235     int linecrossline(line v)
    236     {
    237         if ((*this).parallel(v))
    238         {
    239             return v.relation(a)==3;
    240         }
    241         return 2;
    242     }
    243     point crosspoint(line v)
    244     {
    245         double a1=v.b.sub(v.a).det(a.sub(v.a));
    246         double a2=v.b.sub(v.a).det(b.sub(v.a));
    247         return point((a.x*a2-b.x*a1)/(a2-a1),(a.y*a2-b.y*a1)/(a2-a1));
    248     }
    249     double dispointtoline(point p)
    250     {
    251         return fabs(p.sub(a).det(b.sub(a)))/length();
    252     }
    253     double dispointtoseg(point p)
    254     {
    255         if (dblcmp(p.sub(b).dot(a.sub(b)))<0||dblcmp(p.sub(a).dot(b.sub(a)))<0)
    256         {
    257             return min(p.distance(a),p.distance(b));
    258         }
    259         return dispointtoline(p);
    260     }
    261     point lineprog(point p)
    262     {
    263         return a.add(b.sub(a).mul(b.sub(a).dot(p.sub(a))/b.sub(a).len2()));
    264     }
    265     point symmetrypoint(point p)
    266     {
    267         point q=lineprog(p);
    268         return point(2*q.x-p.x,2*q.y-p.y);
    269     }
    270 };
    271 
    272 struct Vector:public point
    273 {
    274     Vector(){}
    275     Vector(double a,double b)
    276     {
    277         x=a;    y=b;
    278     }
    279     Vector(point _a,point _b)   //a->b
    280     {
    281         double dx=_b.x-_a.x;
    282         double dy=_b.y-_a.y;
    283         x=dx;   y=dy;
    284     }
    285     Vector(line v)
    286     {
    287         double dx=v.b.x-v.a.x;
    288         double dy=v.b.y-v.a.y;
    289         x=dx;   y=dy;
    290     }
    291     double length()
    292     {
    293         return (sqrt(x*x+y*y));
    294     }
    295     Vector Normal()
    296     {
    297         double L=sqrt(x*x+y*y);
    298         Vector Vans=Vector(-y/L,x/L);
    299         return Vans;
    300     }
    301 };
    302 
    303 struct halfplane:public line    //半平面
    304 {
    305     double angle;
    306     halfplane(){}
    307     //表示向量 a->b逆时针(左侧)的半平面
    308     halfplane(point _a,point _b)
    309     {
    310         a=_a;
    311         b=_b;
    312     }
    313     halfplane(line v)
    314     {
    315         a=v.a;
    316         b=v.b;
    317     }
    318     void calcangle()
    319     {
    320         angle=atan2(b.y-a.y,b.x-a.x);
    321     }
    322     bool operator<(const halfplane &b)const
    323     {
    324         return angle<b.angle;
    325     }
    326 };
    327 struct halfplanes   //半平面交
    328 {
    329     int n;
    330     halfplane hp[maxp];
    331     point p[maxp];
    332     int que[maxp];
    333     int st,ed;
    334     void push(halfplane tmp)
    335     {
    336         hp[n++]=tmp;
    337     }
    338     void unique()
    339     {
    340         int m=1,i;
    341         for (i=1;i<n;i++)
    342         {
    343             if (dblcmp(hp[i].angle-hp[i-1].angle))hp[m++]=hp[i];
    344             else if (dblcmp(hp[m-1].b.sub(hp[m-1].a).det(hp[i].a.sub(hp[m-1].a))>0))hp[m-1]=hp[i];
    345         }
    346         n=m;
    347     }
    348     bool halfplaneinsert()
    349     {
    350         int i;
    351         for (i=0;i<n;i++)hp[i].calcangle();
    352         sort(hp,hp+n);
    353         unique();
    354         que[st=0]=0;
    355         que[ed=1]=1;
    356         p[1]=hp[0].crosspoint(hp[1]);
    357         for (i=2;i<n;i++)
    358         {
    359             while (st<ed&&dblcmp((hp[i].b.sub(hp[i].a).det(p[ed].sub(hp[i].a))))<0)ed--;
    360             while (st<ed&&dblcmp((hp[i].b.sub(hp[i].a).det(p[st+1].sub(hp[i].a))))<0)st++;
    361             que[++ed]=i;
    362             if (hp[i].parallel(hp[que[ed-1]]))return false;
    363             p[ed]=hp[i].crosspoint(hp[que[ed-1]]);
    364         }
    365         while (st<ed&&dblcmp(hp[que[st]].b.sub(hp[que[st]].a).det(p[ed].sub(hp[que[st]].a)))<0)ed--;
    366         while (st<ed&&dblcmp(hp[que[ed]].b.sub(hp[que[ed]].a).det(p[st+1].sub(hp[que[ed]].a)))<0)st++;
    367         if (st+1>=ed)return false;
    368         return true;
    369     }
    370     /*
    371     void getconvex(polygon &con)
    372     {
    373         p[st]=hp[que[st]].crosspoint(hp[que[ed]]);
    374         con.n=ed-st+1;
    375         int j=st,i=0;
    376         for (;j<=ed;i++,j++)
    377         {
    378             con.p[i]=p[j];
    379         }
    380     }*/
    381 };
    382 
    383 point p[1000];
    384 Vector V[1000],Vt[1000];
    385 halfplanes TH;
    386 int n;
    387 
    388 int main()
    389 {
    390     //freopen("in.txt","r",stdin);
    391 
    392     while (cin>>n)
    393     {
    394         if (n==0)   break;
    395         for (int i=0;i<n;i++)   //n points:[0..n-1]
    396             p[i].input();
    397 
    398         for (int i=0;i<n;i++)   //v[i]:p[i]->p[i+1]
    399         {
    400             V[i]=Vector(p[i],p[(i+1)%n]);
    401             //printf("vector:   %.6lf  %.6lf
    ",V[i].x,V[i].y);
    402             Vt[i]=V[i].Normal();
    403         }
    404 
    405         double l=0,r=5001;
    406         while (r-l>eps)
    407         {
    408             double mid=(l+r)/2;
    409             //double mid=l+(r-l)/2;
    410             TH.n=0;
    411             //halfplanes TH;
    412 
    413             for (int i=0;i<n;i++)
    414             {
    415                 point t1=p[i].add(Vt[i].mul(mid));
    416                 point t2=t1.add(V[i]);
    417 
    418                 line tmp=line(t1,t2);
    419                 TH.push(halfplane(tmp));
    420             }
    421 
    422             //printf("%.6lf  %d",mid,TH.n);
    423 
    424             if (TH.halfplaneinsert())
    425             {
    426                 //cout<<"OK"<<endl;
    427                 l=mid;      //l=mid+0.00001;
    428             }
    429             else
    430             {
    431                 //cout<<"NO"<<endl;
    432                 r=mid;      //r=mid-0.00001;
    433             }
    434         }
    435         printf("%.6lf
    ",l);
    436     }
    437     return 0;
    438 }
    View Code

    推荐iPad上一个免费又好用的绘图板:Sketches

  • 相关阅读:
    流程图
    如何撰写简历
    产品经理-visio
    关于 EF 对象的创建问题
    LINQ To EF
    IQueryable 与 IEnumberable 接口的区别
    UWP自动填充控件AutoSuggestBox小优化
    xamarin UWP证书问题汇总
    xamarin UWP中MessageDialog与ContentDialog的区别
    xamarin UWP自定义圆角按钮
  • 原文地址:https://www.cnblogs.com/pdev/p/4275911.html
Copyright © 2011-2022 走看看