zoukankan      html  css  js  c++  java
  • CodeForces 1166E The LCMs Must be Large

    题目链接:http://codeforces.com/problemset/problem/1166/E

    说明

    1. LCM(一个集合) 为这个集合中所有元素的最小公倍数。
    2. 如果$A subseteq B,LCM(A) leq LCM(B)$。 

    题目大意

      给定由 n 个整数组成的集合 A 。现给定 m 组集合,每个集合 Si 都是 A 的一个真子集,求是否存在集合 A 使得对$forall_{1 leq i leq m} 不等式LCM(S_i) > LCM(A - S_i)恒成立$。

    分析

      考虑任意两个不同集合 Si 和 Sj,它们有两种可能情况:
    1. 无交集:$LCM(S_i) geq LCM(A - S_i) geq LCM(S_j) 和 LCM(S_j) geq LCM(A - S_j) geq LCM(S_i)矛盾$,所以只要有两个集合没有交集,A就不存在。
    2. 有交集:有交集一不一定存在 A 呢?不晓得,只能说可能,反正题目只需要输出可不可能。
      PS:用 set 做超时,自己写位图吧。

    代码如下

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3  
      4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
      5 #define Rep(i,n) for (int i = 0; i < (n); ++i)
      6 #define For(i,s,t) for (int i = (s); i <= (t); ++i)
      7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
      8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
      9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
     10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
     11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
     12  
     13 #define pr(x) cout << #x << " = " << x << "  "
     14 #define prln(x) cout << #x << " = " << x << endl
     15  
     16 #define LOWBIT(x) ((x)&(-x))
     17  
     18 #define ALL(x) x.begin(),x.end()
     19 #define INS(x) inserter(x,x.begin())
     20  
     21 #define ms0(a) memset(a,0,sizeof(a))
     22 #define msI(a) memset(a,inf,sizeof(a))
     23 #define msM(a) memset(a,-1,sizeof(a))
     24 
     25 #define MP make_pair
     26 #define PB push_back
     27 #define ft first
     28 #define sd second
     29  
     30 template<typename T1, typename T2>
     31 istream &operator>>(istream &in, pair<T1, T2> &p) {
     32     in >> p.first >> p.second;
     33     return in;
     34 }
     35  
     36 template<typename T>
     37 istream &operator>>(istream &in, vector<T> &v) {
     38     for (auto &x: v)
     39         in >> x;
     40     return in;
     41 }
     42  
     43 template<typename T1, typename T2>
     44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
     45     out << "[" << p.first << ", " << p.second << "]" << "
    ";
     46     return out;
     47 }
     48 
     49 inline int gc(){
     50     static const int BUF = 1e7;
     51     static char buf[BUF], *bg = buf + BUF, *ed = bg;
     52     
     53     if(bg == ed) fread(bg = buf, 1, BUF, stdin);
     54     return *bg++;
     55 } 
     56 
     57 inline int ri(){
     58     int x = 0, f = 1, c = gc();
     59     for(; c<48||c>57; f = c=='-'?-1:f, c=gc());
     60     for(; c>47&&c<58; x = x*10 + c - 48, c=gc());
     61     return x*f;
     62 }
     63  
     64 typedef long long LL;
     65 typedef unsigned long long uLL;
     66 typedef pair< double, double > PDD;
     67 typedef pair< int, int > PII;
     68 typedef pair< string, int > PSI;
     69 typedef set< int > SI;
     70 typedef vector< int > VI;
     71 typedef map< int, int > MII;
     72 typedef pair< LL, LL > PLL;
     73 typedef vector< LL > VL;
     74 typedef vector< VL > VVL;
     75 const double EPS = 1e-10;
     76 const LL inf = 0x7fffffff;
     77 const LL infLL = 0x7fffffffffffffffLL;
     78 const LL mod = 1e18 + 7;
     79 const int maxN = 1e4 + 7;
     80 const LL ONE = 1;
     81 const LL evenBits = 0xaaaaaaaaaaaaaaaa;
     82 const LL oddBits = 0x5555555555555555;
     83 
     84 struct BitMap{
     85     char bm[maxN >> 3];
     86     
     87     // 把第 x 位设置为 1 
     88     void set(int x){
     89         bm[x >> 3] |= 0x80 >> (x & 0x07);
     90     }
     91     // 把第 x 位设置为 1 
     92     void clear(int x){
     93         bm[x >> 3] &= ~(0x80 >> (x & 0x07));
     94     }
     95     // 获得第 x 位值 
     96     bool get(int x){
     97         return bm[x >> 3] & (0x80 >> (x & 0x07));
     98     }
     99     
    100     bool operator& (const BitMap &x) const{
    101         Rep(i, maxN >> 3) if(bm[i] & x.bm[i]) return true;
    102         return false;
    103     }
    104     
    105     bool operator| (const BitMap &x) const{
    106         Rep(i, maxN >> 3) if(bm[i] | x.bm[i]) return true;
    107         return false;
    108     }
    109 };
    110 
    111 int m, n, s;
    112 BitMap bitMask[57];
    113 bool ans = true;
    114 
    115 int main(){
    116     INIT(); 
    117     cin >> m >> n;
    118     Rep(i, m) {
    119         cin >> s;
    120         Rep(j, s) {
    121             int x;
    122             cin >> x;
    123             bitMask[i].set(x);
    124         }
    125     } 
    126     
    127     Rep(i, m) {
    128         For(j, i + 1, m - 1) {
    129             if(bitMask[i] & bitMask[j]) continue;
    130             ans = false;
    131             i = m;
    132             break;
    133         }
    134     }
    135     
    136     if(ans) cout << "possible" << endl;
    137     else cout << "impossible" << endl;
    138     return 0;
    139 }
    View Code
  • 相关阅读:
    关于APPIUM滑动手机屏幕的操作
    关于robotframework,app,appium的xpath定位问题及常用方法
    测试行业学习的知识体系
    APPIUM环境搭建及APP配合RF自动化的操作步骤
    关于RF在实践WEB UI自动化测试时,碰到的问题
    高并发
    [emerg] could not build server_names_hash, you should increase server_names_hash_bucket_size:32
    Nginx 反向代理与负载均衡详解
    Nginx 服务器安装及配置文件详解
    牛客网多校训练4 A Ternary String(高阶幂次取模)
  • 原文地址:https://www.cnblogs.com/zaq19970105/p/10902078.html
Copyright © 2011-2022 走看看