题目链接:http://codeforces.com/problemset/problem/1166/E
说明
- LCM(一个集合) 为这个集合中所有元素的最小公倍数。
- 如果$A subseteq B,LCM(A) leq LCM(B)$。
题目大意
给定由 n 个整数组成的集合 A 。现给定 m 组集合,每个集合 Si 都是 A 的一个真子集,求是否存在集合 A 使得对$forall_{1 leq i leq m} 不等式LCM(S_i) > LCM(A - S_i)恒成立$。
分析
考虑任意两个不同集合 Si 和 Sj,它们有两种可能情况:
- 无交集:$LCM(S_i) geq LCM(A - S_i) geq LCM(S_j) 和 LCM(S_j) geq LCM(A - S_j) geq LCM(S_i)矛盾$,所以只要有两个集合没有交集,A就不存在。
- 有交集:有交集一不一定存在 A 呢?不晓得,只能说可能,反正题目只需要输出可不可能。
PS:用 set 做超时,自己写位图吧。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (n); ++i) 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 21 #define ms0(a) memset(a,0,sizeof(a)) 22 #define msI(a) memset(a,inf,sizeof(a)) 23 #define msM(a) memset(a,-1,sizeof(a)) 24 25 #define MP make_pair 26 #define PB push_back 27 #define ft first 28 #define sd second 29 30 template<typename T1, typename T2> 31 istream &operator>>(istream &in, pair<T1, T2> &p) { 32 in >> p.first >> p.second; 33 return in; 34 } 35 36 template<typename T> 37 istream &operator>>(istream &in, vector<T> &v) { 38 for (auto &x: v) 39 in >> x; 40 return in; 41 } 42 43 template<typename T1, typename T2> 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 45 out << "[" << p.first << ", " << p.second << "]" << " "; 46 return out; 47 } 48 49 inline int gc(){ 50 static const int BUF = 1e7; 51 static char buf[BUF], *bg = buf + BUF, *ed = bg; 52 53 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 54 return *bg++; 55 } 56 57 inline int ri(){ 58 int x = 0, f = 1, c = gc(); 59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 61 return x*f; 62 } 63 64 typedef long long LL; 65 typedef unsigned long long uLL; 66 typedef pair< double, double > PDD; 67 typedef pair< int, int > PII; 68 typedef pair< string, int > PSI; 69 typedef set< int > SI; 70 typedef vector< int > VI; 71 typedef map< int, int > MII; 72 typedef pair< LL, LL > PLL; 73 typedef vector< LL > VL; 74 typedef vector< VL > VVL; 75 const double EPS = 1e-10; 76 const LL inf = 0x7fffffff; 77 const LL infLL = 0x7fffffffffffffffLL; 78 const LL mod = 1e18 + 7; 79 const int maxN = 1e4 + 7; 80 const LL ONE = 1; 81 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 82 const LL oddBits = 0x5555555555555555; 83 84 struct BitMap{ 85 char bm[maxN >> 3]; 86 87 // 把第 x 位设置为 1 88 void set(int x){ 89 bm[x >> 3] |= 0x80 >> (x & 0x07); 90 } 91 // 把第 x 位设置为 1 92 void clear(int x){ 93 bm[x >> 3] &= ~(0x80 >> (x & 0x07)); 94 } 95 // 获得第 x 位值 96 bool get(int x){ 97 return bm[x >> 3] & (0x80 >> (x & 0x07)); 98 } 99 100 bool operator& (const BitMap &x) const{ 101 Rep(i, maxN >> 3) if(bm[i] & x.bm[i]) return true; 102 return false; 103 } 104 105 bool operator| (const BitMap &x) const{ 106 Rep(i, maxN >> 3) if(bm[i] | x.bm[i]) return true; 107 return false; 108 } 109 }; 110 111 int m, n, s; 112 BitMap bitMask[57]; 113 bool ans = true; 114 115 int main(){ 116 INIT(); 117 cin >> m >> n; 118 Rep(i, m) { 119 cin >> s; 120 Rep(j, s) { 121 int x; 122 cin >> x; 123 bitMask[i].set(x); 124 } 125 } 126 127 Rep(i, m) { 128 For(j, i + 1, m - 1) { 129 if(bitMask[i] & bitMask[j]) continue; 130 ans = false; 131 i = m; 132 break; 133 } 134 } 135 136 if(ans) cout << "possible" << endl; 137 else cout << "impossible" << endl; 138 return 0; 139 }