zoukankan      html  css  js  c++  java
  • UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)

    Wavio Sequence 


    Wavio is a sequence of integers. It has some interesting properties.

    ·  Wavio is of odd length i.e. L = 2*n + 1.

    ·  The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.

    ·  The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.

    ·  No two adjacent integers are same in a Wavio sequence.

    For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :

    1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.


    Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be 9.

     

    Input

    The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.

     

    Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will be N integers.

     

    Output

    For each set of input print the length of longest wavio sequence in a line.

    Sample Input                                   Output for Sample Input

    10
    1 2 3 4 5 4 3 2 1 10
    19
    1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1
    5
    1 2 3 4 5
     
    9
    9
    1

     


    Problemsetter: Md. Kamruzzaman, Member of Elite Problemsetters' Panel


    题意  求一个序列a某一位的最长递增序列(lis)和最长递减序列(lds)中最小值的最大值

    開始直接用DP写了   然后就超时了  后来看到别人说要用二分把时间复杂度优化到O(n*logn)   果然如此

    用一个栈s保存长度为i的LIS的最小尾部s[i]  top为栈顶即当前LIS的长度  初始s[1]=a[1]  top=1 遍历整个序列  当a[i]>s[top]时  a[i]入栈 in[i]=top

    否则 在栈中查找(二分)第一个大于等于a[i]的下标pos  并替换  这样就添加了LIS增长的潜力 in[i]=pos;

    in[i]表示以a[i]为尾部的LIS的长度;

    求lds的过程也是类似


    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N = 10005;
    int a[N], in[N], de[N], s[N], m, n, top, pos;
    
    int BinSearch (int k, int le, int ri)
    {
        while (le <= ri)
        {
            m = (le + ri) >> 1;
            if (s[m] >= k) ri = m - 1;
            else le = m + 1;
        }
        return ri + 1;
    }
    
    void lis()
    {
        memset (s, 0, sizeof (s));
        memset (in, 0, sizeof (in));
        s[1] = a[1];
        in[1] = top = 1;
        for (int i = 2; i <= n; ++i)
        {
            if (s[top] < a[i])
            {
                s[++top] = a[i];
                in[i] = top;
            }
            else
            {
                pos = BinSearch (a[i], 1, top);
                s[pos] = a[i];
                in[i] = pos;
            }
        }
    }
    
    void lds()
    {
        memset (s, 0, sizeof (s));
        memset (de, 0, sizeof (de));
        s[1] = a[n];
        de[n] = top = 1;
        for (int i = n - 1; i >= 1; --i)
        {
            if (s[top] < a[i])
            {
                s[++top] = a[i];
                de[i] = top;
            }
            else
            {
                pos = BinSearch (a[i], 1, top);
                s[pos] = a[i];
                de[i] = pos;
            }
        }
    }
    
    int main()
    {
        while (scanf ("%d", &n) != EOF)
        {
            for (int i = 1; i <= n; ++i)
                scanf ("%d", &a[i]);
            int ans = 1;
            lis();
            lds();
            for (int i = 1; i <= n; ++i)
            {
                if (min (de[i], in[i]) > ans)
                    ans = min (de[i], in[i]);
            }
            printf ("%d
    ", ans * 2 - 1);
        }
        return 0;
    }


    还有TLE的DP版

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N=10005;
    int a[N],c[N],d[N],n;
    
    int dpde(int i)
    {
        if(d[i]) return d[i];
        d[i]=1;
        for(int j=i;j<=n;++j)
        {
            if(a[i]>a[j])
                d[i]=max(d[i],dpde(j)+1);
        }
        return d[i];
    }
    
    int dpin(int i)
    {
        if(c[i]) return c[i];
        c[i]=1;
        for(int j=i;j>=1;--j)
        {
            if(a[i]>a[j])
                c[i]=max(c[i],dpin(j)+1);
        }
        return c[i];
    }
    
    int main()
    {
        while(scanf("%d",&n)!=EOF)
        {
            for(int i=1;i<=n;++i)
                scanf("%d",&a[i]);
            int ans=1;
            memset(d,0,sizeof(d));
            memset(c,0,sizeof(c));
    
            for(int i=1;i<=n;++i)
            {
                if(min(dpde(i),dpin(i))>ans)
                    ans=min(d[i],c[i]);
            }
    
            printf("%d
    ",ans*2-1);
        }
        return 0;
    }


    
  • 相关阅读:
    boost开发指南
    boost bind function用法说明
    boost库 bind/function的使用
    OpenCV——PS滤镜, 碎片特效
    pthread_join()
    基于用例点来度量软件规模并管理进度 之中的一个
    tomcat的JK和JK2
    rackup工具
    ORACLE EXP命令
    很好的理解遗传算法的样例
  • 原文地址:https://www.cnblogs.com/gccbuaa/p/7158866.html
Copyright © 2011-2022 走看看