zoukankan      html  css  js  c++  java
  • 线段树模板

    1、求区间和

     1 #include <cstdio>
     2 #include <iostream>
     3 using namespace std;
     4 const int maxn=50000+5;
     5 int a[maxn];
     6 struct Node
     7 {
     8     int l,r,sum;
     9 } node[maxn<<2];
    10 
    11 //参数含义:节点区间,节点编号
    12 void InitTree(int l,int r,int k)
    13 {
    14     node[k].r=r;//节点k的右子树
    15     node[k].l=l;
    16     node[k].sum=0;//权值
    17     if(l==r)//到达叶子节点
    18     {
    19         node[k].sum=a[r];
    20         return;
    21     }
    22     int mid=(l+r)>>1;
    23     InitTree(l,mid,k<<1);//递归建左子树
    24     InitTree(mid+1,r,k<<1|1);//递归建右子树
    25 
    26     node[k].sum=node[k<<1].sum+node[k<<1|1].sum;
    27     //父节点的值为两子节点值的和
    28     //此为线段树的核心所在,求最值修改这一句即可
    29 }
    30 void UpdateTree(int l,int r,int k,int sum)
    31 {
    32     if(node[k].l==l&&node[k].r==r)
    33     {
    34         node[k].sum+=sum;
    35         return;
    36     }
    37     int mid=(node[k].l+node[k].r)>>1;
    38     if(l>mid)
    39         UpdateTree(l,r,k<<1|1,sum);//更新下一层的右子树
    40     else
    41         UpdateTree(l,r,k<<1,sum);
    42 
    43     node[k].sum=node[k<<1].sum+node[k<<1|1].sum;
    44     //注意:每次更新后也要更新父节点的值
    45 }
    46 //查询l到r的k
    47 int SearchTree(int l,int r,int k)
    48 {
    49     if(node[k].l==l&&node[k].r==r)
    50     {
    51         return node[k].sum;
    52     }
    53     int mid=(node[k].l+node[k].r)>>1;
    54     if(l>mid)
    55     {
    56         return SearchTree(l,r,k<<1|1);//查询右子树
    57     }
    58     else if(r<=mid)
    59     {
    60         return SearchTree(l,r,k<<1);
    61     }
    62     else
    63     {
    64         //查询区间横跨左右子树,两棵子树一起查询
    65         return SearchTree(mid+1,r,k<<1|1)+SearchTree(l,mid,k<<1);
    66     }
    67 }
    68 int main()
    69 {
    70     int T,kase=0;
    71     cin>>T;
    72     while(T--)
    73     {
    74         printf("Case %d:
    ",++kase);
    75         int n,x,y;
    76         scanf("%d",&n);
    77         for(int i=1;i<=n;i++)
    78         {
    79             scanf("%d",&a[i]);
    80         }
    81         InitTree(1,n,1);
    82         char ch[10];
    83         while(scanf("%s",ch))
    84         {
    85             if(ch[0]=='E')
    86                 break;
    87             scanf("%d%d",&x,&y);
    88             if(ch[0]=='A')
    89                 UpdateTree(x,x,1,y);
    90             else if(ch[0]=='S')
    91                 UpdateTree(x,x,1,-y);
    92             else if(ch[0]=='Q')
    93                 cout<<SearchTree(x,y,1)<<endl;
    94         }
    95     }
    96     return 0;
    97 }
    区间和

    2、求区间最大值

     1 #include <cstdio>
     2 #include <iostream>
     3 using namespace std;
     4 const int maxn=200000+5;
     5 int a[maxn];
     6 struct Node
     7 {
     8     int l,r,sum;
     9 } node[maxn<<2];
    10 
    11 //参数含义:节点区间,节点编号
    12 void InitTree(int l,int r,int k)
    13 {
    14     node[k].r=r;//节点k的右子树
    15     node[k].l=l;
    16     node[k].sum=0;//权值
    17     if(l==r)//到达叶子节点
    18     {
    19         node[k].sum=a[r];
    20         return;
    21     }
    22     int mid=(l+r)>>1;
    23     InitTree(l,mid,k<<1);//递归建左子树
    24     InitTree(mid+1,r,k<<1|1);//递归建右子树
    25 
    26     node[k].sum=max(node[k<<1].sum,node[k<<1|1].sum);
    27     //父节点的值为两子节点值的和
    28     ///此为线段树的核心所在,求最值修改这一句即可
    29 }
    30 void UpdateTree(int l,int r,int k,int sum)
    31 {
    32     if(node[k].l==l&&node[k].r==r)
    33     {
    34         node[k].sum=sum;
    35         return;
    36     }
    37     int mid=(node[k].l+node[k].r)>>1;
    38     if(l>mid)
    39         UpdateTree(l,r,k<<1|1,sum);//更新下一层的右子树
    40     else
    41         UpdateTree(l,r,k<<1,sum);
    42 
    43     node[k].sum=max(node[k<<1].sum,node[k<<1|1].sum);
    44     //注意:每次更新后也要更新父节点的值
    45 }
    46 //查询l到r的k
    47 int SearchTree(int l,int r,int k)
    48 {
    49     if(node[k].l==l&&node[k].r==r)
    50     {
    51         return node[k].sum;
    52     }
    53     int mid=(node[k].l+node[k].r)>>1;
    54     if(l>mid)
    55     {
    56         return SearchTree(l,r,k<<1|1);//查询右子树
    57     }
    58     else if(r<=mid)
    59     {
    60         return SearchTree(l,r,k<<1);
    61     }
    62     else
    63     {
    64         //查询区间横跨左右子树,两棵子树一起查询
    65         return max(SearchTree(mid+1,r,k<<1|1),SearchTree(l,mid,k<<1));
    66     }
    67 }
    68 int main()
    69 {
    70     int n,m;
    71     while(scanf("%d%d",&n,&m)!=EOF)
    72     {
    73         int x,y;
    74         for(int i=1;i<=n;i++)
    75         {
    76             scanf("%d",&a[i]);
    77         }
    78         InitTree(1,n,1);
    79         char ch;
    80         while(m--)
    81         {
    82             getchar();
    83             scanf("%c",&ch);
    84             scanf("%d%d",&x,&y);
    85             if(ch=='U')
    86                 UpdateTree(x,x,1,y);
    87             else if(ch=='Q')
    88                 printf("%d
    ",SearchTree(x,y,1));
    89         }
    90     }
    91     return 0;
    92 }
    求最大值

     3、更新版本(源自网络)(上面两个为更新结点,这个是更新区间)

      1 #include <string.h>
      2 #include <algorithm>
      3 #include <stdio.h>
      4 #include <math.h>
      5 #include <queue>
      6 #define MAXN 100010
      7 #define inf 0x3f3f3f3f
      8 
      9 using namespace std;
     10 
     11 struct node{
     12     long long l,r;//区间[l,r]
     13     long long add;//区间的延时标记
     14     long long sum;//区间和
     15  //   long long mx; //区间最大值
     16  //   long long mn; //区间最小值
     17 }tree[MAXN<<2];//一定要开到4倍多的空间
     18 
     19 void pushup(long long index){
     20     tree[index].sum = tree[index<<1].sum+tree[index<<1|1].sum;
     21 //    tree[index].mx = max(tree[index<<1].mx,tree[index<<1|1].mx);
     22  //   tree[index].mn = min(tree[index<<1].mn,tree[index<<1|1].mn);
     23 }
     24 void pushdown(long long index){
     25     //说明该区间之前更新过
     26     //要想更新该区间下面的子区间,就要把上次更新该区间的值向下更新
     27     if(tree[index].add){
     28         //替换原来的值
     29         /*
     30         tree[index<<1].sum = (tree[index<<1].r-tree[index<<1].l+1)*tree[index].add;
     31         tree[index<<1|1].sum = (tree[index<<1|1].r-tree[index<<1|1].l+1)*tree[index].add;
     32         tree[index<<1].mx = tree[index].add;
     33         tree[index<<1|1].mx = tree[index].add;
     34         tree[index<<1].mn = tree[index].add;
     35         tree[index<<1|1].mn = tree[index].add;
     36         tree[index<<1].add = tree[index].add;
     37         tree[index<<1|1].add = tree[index].add;
     38         tree[index].add = 0;*/
     39         //在原来的值的基础上加上val
     40 
     41         tree[index<<1].sum += (tree[index<<1].r-tree[index<<1].l+1)*tree[index].add;
     42         tree[index<<1|1].sum +=(tree[index<<1|1].r-tree[index<<1|1].l+1)*tree[index].add;
     43   //      tree[index<<1].mx += tree[index].add;
     44    //     tree[index<<1|1].mx += tree[index].add;
     45     //    tree[index<<1].mn += tree[index].add;
     46      //   tree[index<<1|1].mn += tree[index].add;
     47         tree[index<<1].add += tree[index].add;
     48         tree[index<<1|1].add += tree[index].add;
     49         tree[index].add = 0;
     50 
     51     }
     52 }
     53 void build(long long l,long long r,long long index){
     54     tree[index].l = l;
     55     tree[index].r = r;
     56     tree[index].add = 0;//刚开始一定要清0
     57     if(l == r){
     58         scanf("%d",&tree[index].sum);
     59     //    tree[index].mn = tree[index].mx = tree[index].sum;
     60         return ;
     61     }
     62     long long mid = (l+r)>>1;
     63     build(l,mid,index<<1);
     64     build(mid+1,r,index<<1|1);
     65     pushup(index);
     66 }
     67 void updata(long long l,long long r,long long index,long long val){
     68     if(l <= tree[index].l && r >= tree[index].r){
     69         /*把原来的值替换成val,因为该区间有tree[index].r-tree[index].l+1
     70         个数,所以区间和 以及 最值为:
     71         */
     72         /*tree[index].sum = (tree[index].r-tree[index].l+1)*val;
     73         tree[index].mn = val;
     74         tree[index].mx = val;
     75         tree[index].add = val;//延时标记*/
     76         //在原来的值的基础上加上val,因为该区间有tree[index].r-tree[index].l+1
     77         //个数,所以区间和 以及 最值为:
     78         tree[index].sum += (tree[index].r-tree[index].l+1)*val;
     79  //       tree[index].mn += val;
     80   //      tree[index].mx += val;
     81         tree[index].add += val;//延时标记
     82 
     83         return ;
     84     }
     85     pushdown(index);
     86     long long mid = (tree[index].l+tree[index].r)>>1;
     87     if(l <= mid){
     88         updata(l,r,index<<1,val);
     89     }
     90     if(r > mid){
     91         updata(l,r,index<<1|1,val);
     92     }
     93     pushup(index);
     94 }
     95 long long query(long long l,long long r,long long index){
     96     if(l <= tree[index].l && r >= tree[index].r){
     97         return tree[index].sum;
     98         //return tree[index].mx;
     99         //return tree[index].mn;
    100     }
    101     pushdown(index);
    102     long long mid = (tree[index].l+tree[index].r)>>1;
    103     long long ans = 0;
    104   //  long long Max = 0;
    105   //  long long Min = inf;
    106     if(l <= mid){
    107         ans += query(l,r,index<<1);
    108    //     Max = max(query(l,r,index<<1),Max);
    109     //    Min = min(query(l,r,index<<1),Min);
    110     }
    111     if(r > mid){
    112         ans += query(l,r,index<<1|1);
    113       //  Max = max(query(l,r,index<<1|1),Max);
    114       //  Min = min(query(l,r,index<<1|1),Min);
    115     }
    116     return ans;
    117    // return Max;
    118     //return Min;
    119 }
    120 int main()
    121 {
    122     long long n,m,x,y,z;
    123     char q;
    124     scanf("%lld%lld",&n,&m);
    125         build(1,n,1);
    126         getchar();
    127         while(m--){
    128             scanf("%c",&q);
    129             if(q == 'Q'){
    130                 scanf("%lld%lld",&x,&y);
    131                printf("%lld
    ",query(x,y,1));
    132             }
    133             else{
    134                 scanf("%lld%lld%lld",&x,&y,&z);
    135                 updata(x,y,1,z);
    136                /* for(int i = 1; i <= n; ++i){
    137                     printf("a[%d] = %d
    ",i,query(i,i,1));
    138                 }*/
    139             }
    140             getchar();
    141         }
    142     return 0;
    143 }
    区间更新SUMMAXMIN
    まだまだだね
  • 相关阅读:
    PS:图像的编辑(三)修复画笔工具
    如何知道自己电脑连接的无线网密码
    ps里“栅格化图层”有啥作用
    如何解决 ERROR Code 1101报错
    Oracle中SCOTT用户的 emp、dept、bonus、salgrade表的属性和结构
    PSCC2019以上版本如何取消等比裁剪
    distinct 多列详解
    银行取款、查询余额、交电话费功能
    银行卡系统,输入密码取钱功能
    根据周长计算不同形状图形的面积
  • 原文地址:https://www.cnblogs.com/xxQ-1999/p/7606199.html
Copyright © 2011-2022 走看看